上篇文章中我们搭建了kafka的服务器,并可以使用Kafka的命令行工具创建topic,发送和接收消息。下面我们来搭建kafka的开发环境。
 
添加依赖
 
搭建开发环境需要引入kafka的jar包,一种方式是将Kafka安装包中lib下的jar包加入到项目的classpath中,这种比较简单了。不过我们使用另一种更加流行的方式:使用maven管理jar包依赖。
创建好maven项目后,在pom.xml中添加以下依赖:
 
  1. <dependency>
  2. <groupId>org.apache.kafka</groupId>
  3. <artifactId>kafka_2.10</artifactId>
  4. <version>0.8.2.2</version>
  5. </dependency>
 
添加依赖后如果有两个jar包的依赖找不到。点击这里下载这两个jar包,解压后你有两种选择,第一种是使用mvn的install命令将jar包安装到本地仓库,另一种是直接将解压后的文件夹拷贝到mvn本地仓库的com文件夹下,比如我的本地仓库是d:\mvn,完成后我的目录结构是这样的:
 
 
配置程序
 
更新更全的API编程实例点这里:http://blog.csdn.net/honglei915/article/details/37697655
 
首先是一个充当配置文件作用的接口,配置了Kafka的各种连接参数:
  1. package com.sohu.kafkademon;
  2. public interface KafkaProperties
  3. {
  4. final static String zkConnect = "10.22.10.139:2181";
  5. final static String groupId = "group1";
  6. final static String topic = "topic1";
  7. final static String kafkaServerURL = "10.22.10.139";
  8. final static int kafkaServerPort = 9092;
  9. final static int kafkaProducerBufferSize = 64 * 1024;
  10. final static int connectionTimeOut = 20000;
  11. final static int reconnectInterval = 10000;
  12. final static String topic2 = "topic2";
  13. final static String topic3 = "topic3";
  14. final static String clientId = "SimpleConsumerDemoClient";
  15. }
producer
 
  1. package com.sohu.kafkademon;
  2. import java.util.Properties;
  3. import kafka.producer.KeyedMessage;
  4. import kafka.producer.ProducerConfig;
  5. /**
  6. * @author leicui bourne_cui@163.com
  7. */
  8. public class KafkaProducer extends Thread
  9. {
  10. private final kafka.javaapi.producer.Producer<Integer, String> producer;
  11. private final String topic;
  12. private final Properties props = new Properties();
  13. public KafkaProducer(String topic)
  14. {
  15. props.put("serializer.class", "kafka.serializer.StringEncoder");
  16. props.put("metadata.broker.list", "10.22.10.139:9092");
  17. producer = new kafka.javaapi.producer.Producer<Integer, String>(new ProducerConfig(props));
  18. this.topic = topic;
  19. }
  20. @Override
  21. public void run() {
  22. int messageNo = 1;
  23. while (true)
  24. {
  25. String messageStr = new String("Message_" + messageNo);
  26. System.out.println("Send:" + messageStr);
  27. producer.send(new KeyedMessage<Integer, String>(topic, messageStr));
  28. messageNo++;
  29. try {
  30. sleep(3000);
  31. } catch (InterruptedException e) {
  32. // TODO Auto-generated catch block
  33. e.printStackTrace();
  34. }
  35. }
  36. }
  37. }
 
consumer
 
  1. package com.sohu.kafkademon;
  2. import java.util.HashMap;
  3. import java.util.List;
  4. import java.util.Map;
  5. import java.util.Properties;
  6. import kafka.consumer.ConsumerConfig;
  7. import kafka.consumer.ConsumerIterator;
  8. import kafka.consumer.KafkaStream;
  9. import kafka.javaapi.consumer.ConsumerConnector;
  10. /**
  11. * @author leicui bourne_cui@163.com
  12. */
  13. public class KafkaConsumer extends Thread
  14. {
  15. private final ConsumerConnector consumer;
  16. private final String topic;
  17. public KafkaConsumer(String topic)
  18. {
  19. consumer = kafka.consumer.Consumer.createJavaConsumerConnector(
  20. createConsumerConfig());
  21. this.topic = topic;
  22. }
  23. private static ConsumerConfig createConsumerConfig()
  24. {
  25. Properties props = new Properties();
  26. props.put("zookeeper.connect", KafkaProperties.zkConnect);
  27. props.put("group.id", KafkaProperties.groupId);
  28. props.put("zookeeper.session.timeout.ms", "40000");
  29. props.put("zookeeper.sync.time.ms", "200");
  30. props.put("auto.commit.interval.ms", "1000");
  31. return new ConsumerConfig(props);
  32. }
  33. @Override
  34. public void run() {
  35. Map<String, Integer> topicCountMap = new HashMap<String, Integer>();
  36. topicCountMap.put(topic, new Integer(1));
  37. Map<String, List<KafkaStream<byte[], byte[]>>> consumerMap = consumer.createMessageStreams(topicCountMap);
  38. KafkaStream<byte[], byte[]> stream = consumerMap.get(topic).get(0);
  39. ConsumerIterator<byte[], byte[]> it = stream.iterator();
  40. while (it.hasNext()) {
  41. System.out.println("receive:" + new String(it.next().message()));
  42. try {
  43. sleep(3000);
  44. } catch (InterruptedException e) {
  45. e.printStackTrace();
  46. }
  47. }
  48. }
  49. }
简单的发送接收
 
运行下面这个程序,就可以进行简单的发送接收消息了:
  1. package com.sohu.kafkademon;
  2. /**
  3. * @author leicui bourne_cui@163.com
  4. */
  5. public class KafkaConsumerProducerDemo
  6. {
  7. public static void main(String[] args)
  8. {
  9. KafkaProducer producerThread = new KafkaProducer(KafkaProperties.topic);
  10. producerThread.start();
  11. KafkaConsumer consumerThread = new KafkaConsumer(KafkaProperties.topic);
  12. consumerThread.start();
  13. }
  14. }
高级别的consumer
 
下面是比较负载的发送接收的程序:
  1. package com.sohu.kafkademon;
  2. import java.util.HashMap;
  3. import java.util.List;
  4. import java.util.Map;
  5. import java.util.Properties;
  6. import kafka.consumer.ConsumerConfig;
  7. import kafka.consumer.ConsumerIterator;
  8. import kafka.consumer.KafkaStream;
  9. import kafka.javaapi.consumer.ConsumerConnector;
  10. /**
  11. * @author leicui bourne_cui@163.com
  12. */
  13. public class KafkaConsumer extends Thread
  14. {
  15. private final ConsumerConnector consumer;
  16. private final String topic;
  17. public KafkaConsumer(String topic)
  18. {
  19. consumer = kafka.consumer.Consumer.createJavaConsumerConnector(
  20. createConsumerConfig());
  21. this.topic = topic;
  22. }
  23. private static ConsumerConfig createConsumerConfig()
  24. {
  25. Properties props = new Properties();
  26. props.put("zookeeper.connect", KafkaProperties.zkConnect);
  27. props.put("group.id", KafkaProperties.groupId);
  28. props.put("zookeeper.session.timeout.ms", "40000");
  29. props.put("zookeeper.sync.time.ms", "200");
  30. props.put("auto.commit.interval.ms", "1000");
  31. return new ConsumerConfig(props);
  32. }
  33. @Override
  34. public void run() {
  35. Map<String, Integer> topicCountMap = new HashMap<String, Integer>();
  36. topicCountMap.put(topic, new Integer(1));
  37. Map<String, List<KafkaStream<byte[], byte[]>>> consumerMap = consumer.createMessageStreams(topicCountMap);
  38. KafkaStream<byte[], byte[]> stream = consumerMap.get(topic).get(0);
  39. ConsumerIterator<byte[], byte[]> it = stream.iterator();
  40. while (it.hasNext()) {
  41. System.out.println("receive:" + new String(it.next().message()));
  42. try {
  43. sleep(3000);
  44. } catch (InterruptedException e) {
  45. e.printStackTrace();
  46. }
  47. }
  48. }
  49. }

漫游kafka实战篇之搭建Kafka开发环境(3)的更多相关文章

  1. 漫游kafka实战篇之搭建Kafka开发环境

    上篇文章中我们搭建了kafka的服务器,并可以使用Kafka的命令行工具创建topic,发送和接收消息.下面我们来搭建kafka的开发环境.   添加依赖   搭建开发环境需要引入kafka的jar包 ...

  2. 漫游Kafka实战篇之搭建Kafka运行环境

    接下来一步一步搭建Kafka运行环境. Step 1: 下载Kafka 点击下载最新的版本并解压. > tar -xzf kafka_2.9.2-0.8.1.1.tgz > cd kafk ...

  3. 漫游Kafka实战篇之搭建Kafka运行环境(2)

    接下来一步一步搭建Kafka运行环境. Step 1: 下载Kafka 点击下载最新的版本并解压. > tar -xzf kafka_2.9.2-0.8.1.1.tgz > cd kafk ...

  4. 2017.2.20 activiti实战--第二章--搭建Activiti开发环境及简单示例(二)简单示例

    学习资料:<Activiti实战> 第一章 搭建Activiti开发环境及简单示例 2.5 简单流程图及其执行过程 (1)leave.bpmn 后缀名必须是bpmn.安装了activiti ...

  5. activiti实战--第二章--搭建Activiti开发环境及简单示例

    (一)搭建开发环境 学习资料:<Activiti实战> 第一章 认识Activiti 2.1 下载Activiti 官网:http://activiti.org/download.html ...

  6. 你必须知道的指针基础-1.预备篇:搭建GCC开发环境

    一.关于GCC编译器 GCC(GNU Compiler Collection)是一套功能强大.性能优越的编程语言编译器,它是GNU计划的代表作品之一.GCC是Linux平台下最常用的编译器,GCC原名 ...

  7. 2017.2.20 activiti实战--第二章--搭建Activiti开发环境及简单示例(一)搭建开发环境

    学习资料:<Activiti实战> 第一章 认识Activiti 2.1 下载Activiti 官网:http://activiti.org/download.html 进入下载页后,可以 ...

  8. vue第一篇(搭建vue开发环境)

    1.下载node并安装 下载地址: https://nodejs.org/zh-cn/ 下载后双击文件安装 2.检查是否安装成功 node -v v10.16.0 npm -v 6.9.0 如果能正常 ...

  9. Visual Studio搭建Python开发环境

    一.搭建开发环境 1.创建工程: 2.下载环境: 创建好工作以后,点击运行,就会出现下面这个界面,然后点击下载,并安装 http://jingyan.baidu.com/article/fec4bce ...

随机推荐

  1. 20-spring学习-Spring MVC基本操作

    本次实现数据的CRUD功能,数据依然以VO类形式进行数据接收. 一,建立Message.java类操作,负责数据的接收操作. package com.SpringMVC.vo; public clas ...

  2. linux内核——进程切换宏switch_to

    该宏有三个参数:prev, next, last.它们都是局部变量. prev:输入参数,变量值为旧进程描述符的地址. next:输入参数,变量值为新进程描述符的地址. last:输出参数,用来记录该 ...

  3. java dom xml解析和windows dom解析的差别

    1.java dom 子节点包括空节点. 2.java dom 文档节点值也是其的子节点. 而windows dom(mshtml.dll)子节点不包括空节点,而节点值也不是以子节点的方式来对待的.

  4. [Windows驱动开发](三)基础知识——驱动例程

    一.NT式驱动的基本例程 1. 驱动入口函数——DriverEntry // 驱动程序的一般性定义 NTSTATUS DriverEntry(IN PDRIVER_OBJECT pDriverObje ...

  5. DevExpress实现根据行,列索引来获取RepositoryItem的方法

    /// <summary> /// 根据行,列索引来获取RepositoryItem /// </summary> /// <param name="view& ...

  6. 非常简单的一个函数 竟然一直没有使用 find()

    find: 在非string类型的容器里,可以直接找出所对应的元素. find函数需要几个参数:迭代器,下标值,所要找的元素 vector<int> a; find(a.begin(),a ...

  7. spark 学习(二) RDD及共享变量

    声明:本文基于spark的programming guide,并融合自己的相关理解整理而成      Spark应用程序总是包括着一个driver program(驱动程序),它运行着用户的main方 ...

  8. 关于Unity层级面板的自动初始化

    Transform[],GameObject[]这些class类型,Unity会进行自动初始化. 但[ExecuteInEditMode]在编辑模式下执行的时候,会发现初始化其实也是有顺序的,并且在U ...

  9. Atitit.500 503 404错误处理最佳实践oak

    Atitit.500 503 404错误处理最佳实践oak 1. 错误处理的流程(捕获>>日志>>db>>email alert) 1 2. 错误的捕获:strut ...

  10. shell脚本之函数的使用

    把代码封装成函数,相当于造了一个“轮子”,之后就直接重复使用即可. 函数的创建 shell中函数的创建有2种方式 1.使用function关键字 语法 function test { ... } 2. ...