POJ3233 Matrix Power Series 矩阵乘法
http://poj.org/problem?id=3233
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
#include<queue>
using namespace std;
const int maxn=;
const double eps=1e-;
int n,m;
struct mat{
int e[][];
};
mat plu(mat x,mat y){//相加
for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
x.e[i][j]+=y.e[i][j];
x.e[i][j]%=m;
}
}return x;
}
mat pro(mat x,mat y){//相乘
mat z;
for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
z.e[i][j]=;
for(int k=;k<=n;k++){
z.e[i][j]+=x.e[i][k]*y.e[k][j];
z.e[i][j]%=m;
}
}
}return z;
}
mat pow(mat x,int k){//次方
mat z;
if(k==){
return x;
}
if(k%==){
z=pow(pro(x,x),k/);
return z;
}else{
z=pow(pro(x,x),k/);
return pro(z,x);
}
}
mat doit(mat x,int k){//相加
if(k==){
return x;
}
if(k%==){
mat z;
z=doit(x,k/);
return plu(z,pro(z,pow(x,k/)));
}else{
mat z,z1;
z=doit(x,k/);
z1=pow(x,k/);
return plu(plu(z,pro(z,z1)),pro(pro(z1,z1),x));
}
}
int main(){
int k;
mat a;
scanf("%d%d%d",&n,&k,&m);
for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
scanf("%d",&a.e[i][j]);
a.e[i][j]%=m;
}
}
mat ans=doit(a,k);
for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
ans.e[i][j]%=m;
printf("%d ",ans.e[i][j]);
}
cout<<endl;
}
return ;
}
POJ3233 Matrix Power Series 矩阵乘法的更多相关文章
- Poj 3233 Matrix Power Series(矩阵乘法)
Matrix Power Series Time Limit: 3000MS Memory Limit: 131072K Description Given a n × n matrix A and ...
- POJ3233 Matrix Power Series 矩阵快速幂 矩阵中的矩阵
Matrix Power Series Time Limit: 3000MS Memory Limit: 131072K Total Submissions: 27277 Accepted: ...
- POJ3233 [C - Matrix Power Series] 矩阵乘法
解题思路 题目里要求\(\sum_{i=1}^kA^i\),我们不妨再加上一个单位矩阵,求\(\sum_{i=0}^kA^i\).然后我们发现这个式子可以写成这样的形式:\(A(A(A...)+E)+ ...
- POJ3233:Matrix Power Series(矩阵快速幂+二分)
http://poj.org/problem?id=3233 题目大意:给定矩阵A,求A + A^2 + A^3 + … + A^k的结果(两个矩阵相加就是对应位置分别相加).输出的数据mod m.k ...
- POJ3233 Matrix Power Series(矩阵快速幂+分治)
Description Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak. ...
- POJ3233:Matrix Power Series(矩阵快速幂+递推式)
传送门 题意 给出n,m,k,求 \[\sum_{i=1}^kA^i\] A是矩阵 分析 我们首先会想到等比公式,然后得到这样一个式子: \[\frac{A^{k+1}-E}{A-E}\] 发现要用矩 ...
- POJ-3233 Matrix Power Series 矩阵A^1+A^2+A^3...求和转化
S(k)=A^1+A^2...+A^k. 保利求解就超时了,我们考虑一下当k为偶数的情况,A^1+A^2+A^3+A^4...+A^k,取其中前一半A^1+A^2...A^k/2,后一半提取公共矩阵A ...
- [POJ3233]Matrix Power Series 分治+矩阵
本文为博主原创文章,欢迎转载,请注明出处 www.cnblogs.com/yangyaojia [POJ3233]Matrix Power Series 分治+矩阵 题目大意 A为n×n(n<= ...
- poj3233Matrix Power Series(矩阵乘法)
Matrix Power Series Time Limit: 3000MS Memory Limit: 131072K Total Submissions: 23187 Accepted: ...
随机推荐
- cms替换主页
cms替换主页的步骤 1.先做好静态页面: 2.在D:\wamp\www\phpcms\install_package\phpcms\templates文件夹下建新的文件夹tianqiwangluo( ...
- UIDynamicBehavior的行为类翻译
CHENYILONG Blog UIDynamicBehavior的行为类翻译 © chenyilong. Powered by Postach.io Blog
- vue-loader 调用了cssLoaders方法配置了css加载器属性。
module: { loaders: [ // 这里也是相应的配置,test就是匹配文件,loader是加载器, { test: /\.vue$/, loader: 'vue' }, { test: ...
- PHP非常好用的分页类
分页类: <?php /* * ********************************************* * @类名: page * @参数: $myde_total - 总记 ...
- 关于linux系统如何实现fork的研究(二)【转】
转自:http://www.aichengxu.com/linux/7166015.htm 本文为原创,转载请注明:http://www.cnblogs.com/tolimit/ 引言 前一篇关于li ...
- 4B/5B编码原理
4B/5B编码原理 什么是4B/5B编码? 4B/5B编码是百兆以太网(即快速以太网)中线路层编码类型之一,就是用5bit的二进制数来表示4bit二进制数,映射方式如下表所示: 为什么要进行4B/5B ...
- js日期工具
/** * 日期工具类 */ define(function(require, exports, module) { var constants = require("constants&q ...
- Freemaker如何遍历key为non-string类型的map?
(一) 前置知识 Freemaker默认配置下会使用SimpleHash去包装后台传递的hashmap,下段摘抄自官方reference 同样,当你传递进去一个hashmap实例时,会替换为一个sim ...
- C语言使用数学库编译不通过问题
#include <stdio.h>#include <math.h> int main(){ double a = 10.0,b = 3.0; f ...
- LightOJ 1410 Consistent Verdicts(找规律)
题目链接:https://vjudge.net/contest/28079#problem/Q 题目大意:题目描述很长很吓人,大概的意思就是有n个坐标代表n个人的位置,每个人听力都是一样的,每人发出一 ...