题目传送门

Primitive Roots
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 5434   Accepted: 3072

Description

We say that integer x, 0 < x < p, is a primitive root modulo odd prime p if and only if the set { (xi mod p) | 1 <= i <= p-1 } is equal to { 1, ..., p-1 }. For example, the consecutive powers of 3 modulo 7 are 3, 2, 6, 4, 5, 1, and thus 3 is a primitive root modulo 7. 
Write a program which given any odd prime 3 <= p < 65536 outputs the number of primitive roots modulo p. 

Input

Each line of the input contains an odd prime numbers p. Input is terminated by the end-of-file seperator.

Output

For each p, print a single number that gives the number of primitive roots in a single line.

Sample Input

23
31
79

Sample Output

10
8
24

  分析:

  一句话题意:求原根的个数。

  首先,如果知道原根的相关知识,那就可以直接上欧拉函数的板子了。关于原根的知识,请参考这里

  Code:

//It is made by HolseLee on 11th July 2018
//POJ 1284
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<iostream>
#include<iomanip>
using namespace std;
const int N=1e5+;
int n,phi[N],top,q[];
bool vis[N];
void ready()
{
phi[]=;
for(int i=;i<N;i++){
if(!vis[i])phi[q[++top]=i]=i-;
for(int j=,k;j<=top&&(k=i*q[j])<N;j++){
vis[k]=true;
if(i%q[j])phi[k]=phi[i]*(q[j]-);
else {phi[k]=phi[i]*q[j];break;}
}
}
}
int main()
{
ios::sync_with_stdio(false);
ready();
while(cin>>n){
printf("%d\n",phi[n-]);}
return ;
}

POJ1284 Primitive Roots [欧拉函数,原根]的更多相关文章

  1. POJ 1284 Primitive Roots (欧拉函数+原根)

    <题目链接> 题目大意: 满足{ ( $x^{i}$ mod p) | 1 <=$i$ <= p-1 } == { 1, …, p-1 }的x称为模p的原根.给出p,求原根个数 ...

  2. (Relax 数论1.8)POJ 1284 Primitive Roots(欧拉函数的应用: 以n为模的本原根的个数phi(n-1))

    /* * POJ_2407.cpp * * Created on: 2013年11月19日 * Author: Administrator */ #include <iostream> # ...

  3. 【POJ1284】Primitive Roots 欧拉函数

    题目描述: 题意: 定义原根:对于一个整数x,0<x<p,是一个mod p下的原根,当且仅当集合{ (xi mod p) | 1 <= i <= p-1 } 等于{ 1, .. ...

  4. poj1284(欧拉函数+原根)

    题目链接:https://vjudge.net/problem/POJ-1284 题意:给定奇素数p,求x的个数,x为满足{(xi mod p)|1<=i<=p-1}={1,2,...,p ...

  5. poj1284:欧拉函数+原根

    何为原根?由费马小定理可知 如果a于p互质 则有a^(p-1)≡1(mod p)对于任意的a是不是一定要到p-1次幂才会出现上述情况呢?显然不是,当第一次出现a^k≡1(mod p)时, 记为ep(a ...

  6. poj1284 && caioj 1159 欧拉函数1:原根

    这道题不知道这个定理很难做出来. 除非暴力找规律. 我原本找的时候出了问题 暴力找出的从13及以上的答案就有问题了 因为13的12次方会溢出 那么该怎么做? 快速幂派上用场. 把前几个素数的答案找出来 ...

  7. 数学之欧拉函数 &几道poj欧拉题

    欧拉函数总结+证明 欧拉函数总结2 POJ 1284 原根 #include<iostream> #include<cstdio> #include<cstring> ...

  8. hdu2588 GCD (欧拉函数)

    GCD 题意:输入N,M(2<=N<=1000000000, 1<=M<=N), 设1<=X<=N,求使gcd(X,N)>=M的X的个数.  (文末有题) 知 ...

  9. BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2553  Solved: 1565[Submit][ ...

随机推荐

  1. 前端PHP入门-027-数组常用函数-掌握级别

    下面的函数一定要到熟悉甚至到掌握级别. 这些函数,也是面试中基础面试中最爱问到的问题. 函数名 功能 array_combine() 生成一个数组,用一个数组的值作为键名,另一个数组值作为值 rang ...

  2. angularJs 跨控制器与跨页面传值

    虽然网上概括了四种或更多的传值方式,但我现在用的顺手的就两种 首先要知道AngularJs可以构建一个单页面应用程序,所以我划分为跨控制器传值 和 跨页面传值 两类 1.跨控制器传值—— $rootS ...

  3. GridControl详解(四)分组排序汇总

    分组: 按时间分第一组: 按性别分第二组: 显示结果: 高级设置: 将所有组展开代码:gridView1.ExpandAllGroups(); 显示结果: 自定义组名,GridView级事件 增加事件 ...

  4. 正则表达式:Python 模块 re 简介

    为了使文章更具可读性,本文将正则表达式冗长的 语法介绍 放在了文章的末尾. 一.正则表达式简介 正则表达式(RegExp)是一种文本模式,包括普通字符(例如,a 到 z 之间的字母)和特殊字符(元字符 ...

  5. 51nod 1073 约瑟夫环

    题目链接 先说一下什么是约瑟夫环,转自:传送门 关于约瑟夫环问题,无论是用链表实现还是用数组实现都有一个共同点:要模拟整个游戏过程,不仅程序写起来比较烦,而且时间复杂度高达O(nm),当n,m非常大( ...

  6. 【洛谷 P1772】 [ZJOI2006]物流运输(Spfa,dp)

    题目链接 \(g[i][j]\)表示不走在\(i\text{~}j\)时间段中会关闭的港口(哪怕只关\(1\)天)从\(1\)到\(m\)的最短路. \(f[i]\)表示前\(i\)天的最小花费.于是 ...

  7. python小爬虫练手

    一个人无聊,写了个小爬虫爬取不可描述图片.... 代码太短,就暂时先往这里贴一下做备份吧. 注:这是很严肃的技术研究,当然爬下来的图片我会带着批判性的眼光审查一遍的....   :) #! /usr/ ...

  8. 【Tomcat】tomcat设置http文件下载,配置文件下载目录

    tomcat作为http的下载服务器,网上有很多办法 但我认为最简单的是:(亲测有效) 1.直接把文件放在 /var/lib/tomcat6/webapps/ROOT 目录下, 2.然后在网址中访问: ...

  9. 某线下赛AWD

    拿别人比赛的来玩一下,或许这就是菜的力量吧. 0x01 任意文件读取: switch ($row['media_type']) { case 0: // 图片广告 ...... break; case ...

  10. nginx配置不当导致的目录遍历下载漏洞-“百度杯”CTF比赛 2017 二月场

    题目:http://98fe42cede6c4f1c9ec3f55c0f542d06b680d580b5bf41d4.game.ichunqiu.com/login.php 题目内容: 网站要上线了, ...