题目传送门

Primitive Roots
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 5434   Accepted: 3072

Description

We say that integer x, 0 < x < p, is a primitive root modulo odd prime p if and only if the set { (xi mod p) | 1 <= i <= p-1 } is equal to { 1, ..., p-1 }. For example, the consecutive powers of 3 modulo 7 are 3, 2, 6, 4, 5, 1, and thus 3 is a primitive root modulo 7. 
Write a program which given any odd prime 3 <= p < 65536 outputs the number of primitive roots modulo p. 

Input

Each line of the input contains an odd prime numbers p. Input is terminated by the end-of-file seperator.

Output

For each p, print a single number that gives the number of primitive roots in a single line.

Sample Input

23
31
79

Sample Output

10
8
24

  分析:

  一句话题意:求原根的个数。

  首先,如果知道原根的相关知识,那就可以直接上欧拉函数的板子了。关于原根的知识,请参考这里

  Code:

//It is made by HolseLee on 11th July 2018
//POJ 1284
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<iostream>
#include<iomanip>
using namespace std;
const int N=1e5+;
int n,phi[N],top,q[];
bool vis[N];
void ready()
{
phi[]=;
for(int i=;i<N;i++){
if(!vis[i])phi[q[++top]=i]=i-;
for(int j=,k;j<=top&&(k=i*q[j])<N;j++){
vis[k]=true;
if(i%q[j])phi[k]=phi[i]*(q[j]-);
else {phi[k]=phi[i]*q[j];break;}
}
}
}
int main()
{
ios::sync_with_stdio(false);
ready();
while(cin>>n){
printf("%d\n",phi[n-]);}
return ;
}

POJ1284 Primitive Roots [欧拉函数,原根]的更多相关文章

  1. POJ 1284 Primitive Roots (欧拉函数+原根)

    <题目链接> 题目大意: 满足{ ( $x^{i}$ mod p) | 1 <=$i$ <= p-1 } == { 1, …, p-1 }的x称为模p的原根.给出p,求原根个数 ...

  2. (Relax 数论1.8)POJ 1284 Primitive Roots(欧拉函数的应用: 以n为模的本原根的个数phi(n-1))

    /* * POJ_2407.cpp * * Created on: 2013年11月19日 * Author: Administrator */ #include <iostream> # ...

  3. 【POJ1284】Primitive Roots 欧拉函数

    题目描述: 题意: 定义原根:对于一个整数x,0<x<p,是一个mod p下的原根,当且仅当集合{ (xi mod p) | 1 <= i <= p-1 } 等于{ 1, .. ...

  4. poj1284(欧拉函数+原根)

    题目链接:https://vjudge.net/problem/POJ-1284 题意:给定奇素数p,求x的个数,x为满足{(xi mod p)|1<=i<=p-1}={1,2,...,p ...

  5. poj1284:欧拉函数+原根

    何为原根?由费马小定理可知 如果a于p互质 则有a^(p-1)≡1(mod p)对于任意的a是不是一定要到p-1次幂才会出现上述情况呢?显然不是,当第一次出现a^k≡1(mod p)时, 记为ep(a ...

  6. poj1284 && caioj 1159 欧拉函数1:原根

    这道题不知道这个定理很难做出来. 除非暴力找规律. 我原本找的时候出了问题 暴力找出的从13及以上的答案就有问题了 因为13的12次方会溢出 那么该怎么做? 快速幂派上用场. 把前几个素数的答案找出来 ...

  7. 数学之欧拉函数 &几道poj欧拉题

    欧拉函数总结+证明 欧拉函数总结2 POJ 1284 原根 #include<iostream> #include<cstdio> #include<cstring> ...

  8. hdu2588 GCD (欧拉函数)

    GCD 题意:输入N,M(2<=N<=1000000000, 1<=M<=N), 设1<=X<=N,求使gcd(X,N)>=M的X的个数.  (文末有题) 知 ...

  9. BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2553  Solved: 1565[Submit][ ...

随机推荐

  1. centos7通过yum安装MySQL

    一:去官网查看最新安装包 https://dev.mysql.com/downloads/repo/yum/ 二:下载MySQL源安装包 wget http://dev.mysql.com/get/m ...

  2. 前端PHP入门-014-参数的引用

    我们学习了变量的引用,我们来回顾一下知识: <?php $a = 10; $b = &$a; $a = 100; echo $a.'---------'.$b; ?> 而函数的参数 ...

  3. horizon源码分析(一)

    源码版本:H版 一.写在前面 本来应该搭建horizon的development环境的,这样方便debug,但是由于各种报错,本人没有搭建成功,这也导致有很多源码疑问没有解决,后续可以继续补充这一部分 ...

  4. 2015年IPC网络摄像机技术发展现状分析

    网络摄像机将图像转换为基于TCP/IP网络标准的数据包,使摄像机所摄的画面通过RJ-45以太网接口或WIFI WLAN无线接口直接传送到网络上,通过网络即可远端监视画面. 一.网络摄像机的基本原理 网 ...

  5. Spring 与 SpringMVC 容器父子关系引出的相应问题

    1)关系说明 spring 与 springmvc 父子关系:spring (父容器),springmvc (子容器) springmvc(子)--- 可调用 --> spring(父) 中的 ...

  6. dotnet core 实践——日志组件Serilog

     前几天把基于quartz.net的部分项目代码移植到了dotnet core ,但是没增加日志功能,原因是没找到合适的组件. 今天终于找到了Serilog: https://github.com/s ...

  7. Javascript的执行过程详细研究

    下面我们以更形象的示例来说明JavaScript代码在页面中的执行顺序.如果说,JavaScript引擎的工作机制比较深奥是因为它属于底层行为,那么JavaScript代码执行顺序就比较形象了,因为我 ...

  8. 【BZOJ】3963: [WF2011]MachineWorks

    [题意]给定n台在时间di可以买入的机器,pi买入,可在任意时间ri卖出,买入和卖出之间的持有时间每天产生gi金钱,任意时间至多持有一台机器.给定初始钱数c和总天数T,求最大收益.n<=10^5 ...

  9. Tomcat面试题目

    1.tomcat给你你怎样去调优? 1. JVM参数调优:-Xms<size> 表示JVM初始化堆的大小,-Xmx<size>表示JVM堆的最大值.这两个值的大小一般根据需要进 ...

  10. NYOJ 257 郁闷的C小加(一) (字符串处理)

    题目链接 描述 我们熟悉的表达式如a+b.a+b(c+d)等都属于中缀表达式.中缀表达式就是(对于双目运算符来说)操作符在两个操作数中间:num1 operand num2.同理,后缀表达式就是操作符 ...