【后缀数组之height数组】
模板奉上
int rank[maxn],height[maxn];
void calheight(int *r,int *sa,int n)
{
int i,j,k=;
for(i=;i<=n;i++) rank[sa[i]]=i;
for(i=;i<n;height[rank[i++]]=k)
for(k?k--:,j=sa[rank[i]-];r[i+k]==r[j+k];k++) //求h[i] = height[rank[i]];
;
return;
}
概念:
(1)height 数组:定义height[i]=suffix(SA[i-1])和suffix(SA[i])的最长公共前缀,也就是排名相邻的两个后缀的最长公共前缀的长度 。
(2)h[i]=height[rank[i]],也就是suffix(i)和排序后在它前一名的后缀的最长公共前缀的长度。
(3)函数lcp(u,v)=max{i|u=v},也就是从头开始顺次比较u和v的对应字符,对应字符持续相等的最大位置,称为这两个字符串u,v的最长公共前缀的长度。
(4)LCP(i,j):对正整数i,j 定义LCP(i,j)=lcp(Suffix(SA[i]),Suffix(SA[j]),其中i,j 均为1至n的整数。LCP(i,j)也就是后缀数组中第i个和第j个后缀的最长公共前缀的长度。
性质:
(1)LCP(i,j)=min{height[k]|i+1≤k≤j},也就是说,计算LCP(i,j)等同于询问一维数组height[] 中下标在i+1 到j 范围内的所有元素的最小值。
(2)对于i>1 且Rank[i]>1,一定有h[i]≥h[i-1]-1。(这条性质要好好理解!)
证明:设suffix(k)是排在suffix(i-1)前一名的后缀,它们的最长公共前缀是h[i-1]。
那么suffix(k+1)将排在suffix(i)的前面(这里要求h[i-1]>1,如果h[i-1]≤1,原式显然成立)并且suffix(k+1)和suffix(i)的最长公共前缀是h[i-1]-1,
所以suffix(i)和在它前一名的后缀的最长公共前缀至少是h[i-1]-1。
按照h[1],h[2],……,h[n]的顺序计算,并利用h 数组的性质,时间复杂度可以降为O(n)。
即:
rank[i-1] = q-1 suffix(k): rabaa
rank[i-1] = q suffix(i-1): racadabrabaa h[i-1] = 2;
......
rank[k-1] = p-1 suffix(k-1): abaa
rank[i] = p suffix(i): acadabrabaa h[i] = 1 (h[i] >= h[i-1]-1 = 1;)
计算数组h[]
可以令i从1循环到n(此循环中i的意义为suffix(i))按照如下方法依次算出h[i]:
若 Rank[i]=1,则h[i]=0。字符比较次数为0。
若i=1或者h[i-1]≤1,则直接将Suffix(i)和Suffix(Rank[i]-1)从第一个字符开始依次比较直到有字符不相同,由此计算出h[i]。字符比较次数为h[i]+1,不超过h[i]-h[i-1]+2。
否则,说明i>1,Rank[i]>1,h[i-1]>1,根据性质2,Suffix(i)和Suffix(Rank[i]-1)至少有前h[i-1]-1 个字符是相同的,于是字符比较可以从h[i-1]开始,直到某个字符不相同,由此计算出h[i]。字符比较次数为h[i]-h[i-1]+2。
可求得最后算法复杂度为O(n)。
【后缀数组之height数组】的更多相关文章
- 【POJ2774】Long Long Message(后缀数组求Height数组)
点此看题面 大致题意: 求两个字符串中最长公共子串的长度. 关于后缀数组 关于\(Height\)数组的概念以及如何用后缀数组求\(Height\)数组详见这篇博客:后缀数组入门(二)--Height ...
- 后缀数组入门(二)——Height数组与LCP
前言 看这篇博客前,先去了解一下后缀数组的基本操作吧:后缀数组入门(一)--后缀排序. 这篇博客的内容,主要建立于后缀排序的基础之上,进一步研究一个\(Height\)数组以及如何求\(LCP\). ...
- 关于后缀数组的倍增算法和height数组
自己看着大牛的论文学了一下后缀数组,看了好久好久,想了好久好久才懂了一点点皮毛TAT 然后就去刷传说中的后缀数组神题,poj3693是进化版的,需要那个相同情况下字典序最小,搞这个搞了超久的说. 先简 ...
- 后缀数组的一些性质----height数组
height数组:定义 height[i] = suffix[i-1] 和 suffix[i] 的最长公共前缀,也就是排名相邻的两个后缀的最长公共前缀.那么对于 j 和 k 不妨设 Rank[j] & ...
- BZOJ2251 [2010Beijing Wc]外星联络 后缀数组 + Height数组
Code: #include <bits/stdc++.h> #define setIO(s) freopen(s".in", "r", stdin ...
- 洛谷P2408 不同子串个数 后缀数组 + Height数组
## 题目描述: 给你一个长为 $N$ $(N<=10^5)$ 的字符串,求不同的子串的个数我们定义两个子串不同,当且仅当有这两个子串长度不一样 或者长度一样且有任意一位不一样.子串的定义:原字 ...
- luogu P2852 [USACO06DEC]牛奶模式Milk Patterns 后缀数组 + Height数组 + 二分答案 + 扫描
后缀数组有一个十分有趣的性质: $height[rk[i]] >= height[rk[i-1]] - 1$ Code: #include <bits/stdc++.h> #d ...
- Java后缀数组-求sa数组
后缀数组的一些基本概念请自行百度,简单来说后缀数组就是一个字符串所有后缀大小排序后的一个集合,然后我们根据后缀数组的一些性质就可以实现各种需求. public class MySuffixArrayT ...
- 【后缀数组之SA数组】【真难懂啊】
基本上一搜后缀数组网上的模板都是<后缀数组——处理字符串的有力工具>这一篇的注释,O(nlogn)的复杂度确实很强大,但对于初次接触(比如窝)的人来说理解起来也着实有些困难(比如窝就活活好 ...
随机推荐
- laravel phpstorm IDE 代码提示
第一步:在项目的composer.json中添加如下一行 "require": { "laravel/framework": "5.0.*" ...
- ios广告封装
代码地址:https://github.com/CoderZhuXH/XHLaunchAd
- 常见的APP性能测试指标
性能测试在软件的质量保证中起着重要的作用,它包括的测试内容丰富多样.中国软件评测中心将性能测试概括为三个方面:应用在客户端性能的测试.应用在网络上性能的测试和应用在服务器端性能的测试.通常情况下,三方 ...
- Crack IDEA
使用破解补丁 Crack IDEA→在http://idea.lanyus.com/上可以找到最新的破解补丁,下载并放到软件的bin目录下 →更改bin目录下的两个文件:Idea.exe.vmopti ...
- 764. Largest Plus Sign最大的dfs十字架
[抄题]: 求挖掉一些区域后,能允许出现的最大十字架 In a 2D grid from (0, 0) to (N-1, N-1), every cell contains a 1, except t ...
- ConcurrentHashMap的实现原理与使用
一.适应ConcurrentHashMap的原因 HashMap存在线程不安全的问题,HashTable效率十分低下,因此,ConcurrentHashMap有了合适的登场机会. (1)HashTab ...
- XSS的原理分析与解剖:第三章(技巧篇)【转】
0×01 前言: 关于前两节url: 第一章:http://www.freebuf.com/articles/web/40520.html 第二章:http://www.freebuf.com/art ...
- p1429 平面最近点对(加强版)
传送门 分析 我们可以枚举每一个点算它的最近点 估价函数应该分为3种情况计算: 大于max,小于min,位于min和max之间 代码 #include<iostream> #include ...
- IntelliJ IDEA开发golang环境配置
IntelliJ IDEA开发golang环境配置 首先把GO安装好...(自行安装,附上一篇我之前写的MAC安装GO) 安装IntelliJ IDEA,下载地址: https://www.jetbr ...
- java/rabbitmp发布订阅示例(转)
原文:http://www.cnblogs.com/tinmh/p/6134875.html 发布/订阅模式即生产者将消息发送给多个消费者. 下面介绍几个在发布/订阅模式中的关键概念-- 1. Exc ...