A Bamboo的小吃街

分析

经典的两条流水线问题,题目描述基本类似于课件中的流水线调度,符合动态规划最优子结构性质

关键的动态规划式子为:

dp[0][j] = min(dp[0][j - 1], dp[1][j - 1] + t[1][j - 1]) + p[0][j] //保存在左边第j个店铺时已经用的时间

dp[1][j] = min(dp[1][j - 1], dp[0][j - 1] + t[0][j - 1]) + p[1][j] //保存在右边第j个店铺时已经用的时间

即到达i边第j个店铺,可以从i边第j-1个店铺过来,也可以从另一边的j-1个店铺过来,后者需要加上过马路的时间;两者都要加上在第i边第j个店铺停留的时间

最后比较dp[0][n-1]和dp[1][n-1],找到最小值即为所求。

循环店铺数,同时更新两边的时间。

伪代码

dp[2][maxx]
p[2][maxx]
t[2][maxx]
//dp[0][j] 在左边第j家店时已经用的时间
//p t 如题所示
dp[0][0]=p[0][0]
dp[1][0]=p[1][0]
for j=1:n
dp[0][j] = min(dp[0][j - 1], dp[1][j - 1] + t[1][j - 1]) + p[0][j]
dp[1][j] = min(dp[1][j - 1], dp[0][j - 1] + t[0][j - 1]) + p[1][j]
end
取两者中较小者

代码

const int maxx = 510;
int dp[2][maxx];
int p[2][maxx];
int t[2][maxx];
int main()
{
int n;
while (~scanf("%d", &n))
{
memset(dp, 0, sizeof(dp));
int i, j;
for (i = 0; i<2; i++)
for (j = 0; j<n; j++)
scanf("%d", &p[i][j]);
for (i = 0; i<2; i++)
for (j = 0; j<n - 1; j++)
scanf("%d", &t[i][j]); dp[0][0] = p[0][0];
dp[1][0] = p[1][0];
for (j = 1; j<n; j++)
{
dp[0][j] = min(dp[0][j - 1], dp[1][j - 1] + t[1][j - 1]) + p[0][j];
dp[1][j] = min(dp[1][j - 1], dp[0][j - 1] + t[0][j - 1]) + p[1][j];
}
long long ans = dp[0][n - 1]<dp[1][n - 1] ? dp[0][n - 1] : dp[1][n - 1];
printf("%lld\n", ans);
}
}

2016级算法第三次上机-A.Bamboo的小吃街的更多相关文章

  1. 2016级算法第三次上机-B.Bamboo和巧克力工厂

    B Bamboo和巧克力工厂 分析 三条流水线的问题,依然是动态规划,但是涉及的切换种类比较多.比较易于拓展到n条流水线的方式是三层循环,外层是第k个机器手,里面两层代表可切换的流水线 核心dp语句: ...

  2. 2016级算法第三次上机-G.Winter is coming

    904 Winter is coming 思路 难题.首先简化问题, \(n\) 个0与 \(m\) 个1排成一列,连续的0不能超过x个,连续的1不能超过y个,求排列方法数. 显然会想到这是动态规划. ...

  3. 2016级算法第三次上机-C.AlvinZH的奇幻猜想——三次方

    905 AlvinZH的奇幻猜想--三次方 思路 中等题.题意简单,题目说得简单,把一个数分成多个立方数的和,问最小立方数个数. 脑子转得快的马上想到贪心,从最近的三次方数往下减,反正有1^3在最后撑 ...

  4. 2016级算法第三次上机-F.ModricWang的导弹防御系统

    936 ModricWang的导弹防御系统 思路 题意即为:给出一个长度为n的序列,求出其最长不降子序列. 考虑比较平凡的DP做法: 令\(nums[i]\) 表示这个序列,\(f[x]\) 表示以第 ...

  5. 2016级算法第三次上机-E.ModricWang's Polygons

    930 ModricWang's Polygons 思路 首先要想明白,哪些多边形可能是格点正多边形? 分情况考虑: 三角形不可能,因为边长为有理数的正三角形的面积为无理数,而格点三角形的面积为有理数 ...

  6. 2016级算法第三次上机-D.双十一的抉择

    915 双十一的抉择 思路 中等题.简化题目:一共n个数,分成两组,使得两组的差最接近0,就是说要使两组数都尽可能的接近sum/2. 思路还是很混乱的,不知道如何下手,暴力也挺难的,还不能保证对.想一 ...

  7. 2016级算法第六次上机-E.Bamboo之吃我一拳

    Bamboo之吃我一拳 分析 当两个点的距离<=d时,才可以出拳,想要使得满足出拳条件的点对最少但不为0 寻找最近点对距离,得到的最近距离能够使得可以出拳的组数最少,因为除了最近点对外其他组合均 ...

  8. 2016级算法第六次上机-A.Bamboo之寻找小金刚

    Bamboo之寻找小金刚 分析 可以抽象为许多连续线段,分别计数左拐和右拐的个数.考察叉积的基础应用. 假设ABC三点构成一个夹角∠ABC,B就是拐点,AC是辅助形成夹角.考虑线段AB和BC形成的向量 ...

  9. 2016级算法第五次上机-B.Bamboo&APTX4844魔发药水

    Bamboo&APTX4844魔发药水 题意 "于是,Bamboo耐着性子,看巫师从袖子里掏出 M 瓶时光泉水和 K 粒绿色能量.每瓶时光泉水重量为 c ,生发效果为 l:每粒绿色能 ...

随机推荐

  1. python-nmap模块常用方法说明

    一.模块常用方法说明 本节介绍python-nmap模块的两个常用类,一个为PortScanner()类,实现一个nmap工具的端口扫描功能封装:另一个为PortScannerHostDict()类, ...

  2. redis 面试题1 有用

    1.什么是redis? Redis 是一个基于内存的高性能key-value数据库. 2.Reids的特点 Redis本质上是一个Key-Value类型的内存数据库,很像memcached,整个数据库 ...

  3. fastDFS配置及日志查看 所遇到的问题

    FastDFS的配置文件在/usr/local/webserver/fastdfs/etc目录下,其中包括 client.conf    客户端上传配置文件 storage.conf    文件存储服 ...

  4. vim全局替换命令-乾颐堂

    语法为 :[addr]s/源字符串/目的字符串/[option] 全局替换命令为::%s/源字符串/目的字符串/g [addr] 表示检索范围,省略时表示当前行. 如:“1,20” :表示从第1行到2 ...

  5. IntelliJ IDEA开发golang环境配置

    IntelliJ IDEA开发golang环境配置 首先把GO安装好...(自行安装,附上一篇我之前写的MAC安装GO) 安装IntelliJ IDEA,下载地址: https://www.jetbr ...

  6. AJAX和DHTML

    DHTML: (动态的html)本身不是一门新语言,而是一门新技术,包含以下 html . css . dom . js AJAX  :  也是一门新技术包含    html . css.  dom ...

  7. myeclipse如何将项目打包成war包

    打包步骤如下: 详细介绍请查看全文:https://cnblogs.com/qianzf/ 原文博客的链接地址:https://cnblogs.com/qzf/

  8. java/rabbitmp发布订阅示例(转)

    原文:http://www.cnblogs.com/tinmh/p/6134875.html 发布/订阅模式即生产者将消息发送给多个消费者. 下面介绍几个在发布/订阅模式中的关键概念-- 1. Exc ...

  9. Yii2在Form中处理短信验证码的Validator,耦合度最低的短信验证码验证方式

    短信验证码在目前大多数web应用中都会有,本文介绍一个基于Yii2 Validator方式的验证码验证方式. 在其他文章中看到的方式大多比较难做到一次封装,多次重用. 使用此方式的好处自然不用多说,V ...

  10. git post-receive 待验证的代码

    使用 git post-receive 钩子部署服务端代码 本站文章除注明转载外,均为本站原创或者翻译. 本站文章欢迎各种形式的转载,但请18岁以上的转载者注明文章出处,尊重我的劳动,也尊重你的智商: ...