一、添加一个新的网络层

(1)parse.c文件中函数string_to_layer_type,添加网络层类型解析:

if (strcmp(type, "[depthwise_convolutional]") == 0) return DEPTHWISE_CONVOLUTIONAL;

(2)darknet.h文件中枚举类型LAYER_TYPE,添加网络层枚举类型:

DEPTHWISE_CONVOLUTIONAL;

(3)parse.c文件中函数parse_network_cfg添加网络层解析后进行构建:

        LAYER_TYPE lt = string_to_layer_type(s->type);
if (lt == DEPTHWISE_CONVOLUTIONAL) {
l = parse_depthwise_convolutional(options, params);//自己编写的函数,主要调用了make layer
}
        else if(lt == CONVOLUTIONAL){
            l = parse_convolutional(options, params);

(4)parse.c 添加参数读取网络层加载文件

A、添加网络层读取参数函数

void load_weights_upto(network *net, char *filename, int start, int cutoff)
load depthwise weights;

B、把参数读取到内存上:

void load_depthwise_convolutional_weights(layer l, FILE *fp);

C、以及修改depthwise_convolutional_kenel.cu把读取后的cpu参数拷贝到显存上:

void push_depthwise_convolutional_layer(depthwise_convolutional_layer layer);

(5)parse.c添加参数保存功能:

void save_weights_upto(network net, char *filename, int cutoff):
void save_depthwise_convolutional_weights(layer l, FILE *fp);
void pull_depthwise_convolutional_layer(depthwise_convolutional_layer layer);

(6)添加network.c中网络层:

int resize_network(network *net, int w, int h)的resize:
if (l.type==DEPTHWISE_CONVOLUTIONAL)
{
resize_depthwise_convolutional_layer(&l, w, h);
}

(7)另外在多卡异步训练的时候,network_kernels.cu的好几个函数也要添加depth_convolutional参数相关的更新设置。

总结为一句话:直接搜索项目中调用:CONVOLUTIONAL的关键子

有调用到卷积层枚举类型的地方,可分离卷积层也要添加相对应的功能。

(8)darknet使用须知:darknet的网络配置文件中的学习率、batch并不是我们平时所说的学习率、batch_size。网络更新所用的学习率为:learning_rate/batch_size,所以学习率不能太小,比如如果学习率设置为0.01,batch=128,那么实际计算的学习率就是0.000078,非常小的一个数值,基本上就是更新不了

二、编写网络层代码:depthwise_convolutional_kernels.cu、depthwise_convolutional_layer.c、depthwise_convolutional_layer.h

三、编写mobilenet网络结构文件:

[net]
batch=32
subdivisions=1
height=224
width=224
channels=3
momentum=0.9
decay=0.000
max_crop=320

learning_rate=0.1
policy=poly
power=3
max_batches=1600000

#conv1
[convolutional]
batch_normalize=1
filters=32
size=3
stride=2
pad=1
activation=relu

#conv2_1/dw
[depthwise_convolutional]
batch_normalize=1
size=3
stride=1
pad=1
activation=relu

#conv2_1/sep
[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=0
activation=relu

#conv2_2/dw
[depthwise_convolutional]
batch_normalize=1
size=3
stride=2
pad=1
activation=relu

#conv2_2/sep
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=0
activation=relu

#conv3_1/dw
[depthwise_convolutional]
batch_normalize=1
size=3
stride=1
pad=1
activation=relu

#conv3_1/sep
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=0
activation=relu

#conv3_2/dw
[depthwise_convolutional]
batch_normalize=1
size=3
stride=2
pad=1
activation=relu

#conv3_2/sep
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=0
activation=relu

#conv4_1/dw
[depthwise_convolutional]
batch_normalize=1
size=3
stride=1
pad=1
activation=relu

#conv4_1/sep
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=0
activation=relu

#conv4_2/dw
[depthwise_convolutional]
batch_normalize=1
size=3
stride=2
pad=1
activation=relu

#conv4_2/sep
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=0
activation=relu

#conv5_1/dw
[depthwise_convolutional]
batch_normalize=1
size=3
stride=1
pad=1
activation=relu

#conv5_1/sep
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=0
activation=relu

#conv5_2/dw
[depthwise_convolutional]
batch_normalize=1
size=3
stride=1
pad=1
activation=relu

#conv5_2/sep
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=0
activation=relu

#conv5_3/dw
[depthwise_convolutional]
batch_normalize=1
size=3
stride=1
pad=1
activation=relu

#conv5_3/sep
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=0
activation=relu

#conv5_4/dw
[depthwise_convolutional]
batch_normalize=1
size=3
stride=1
pad=1
activation=relu

#conv5_4/sep
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=0
activation=relu

#conv5_5/dw
[depthwise_convolutional]
batch_normalize=1
size=3
stride=1
pad=1
activation=relu

#conv5_5/sep
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=0
activation=relu

#conv5_6/dw
[depthwise_convolutional]
batch_normalize=1
size=3
stride=2
pad=1
activation=relu

#conv5_6/sep
[convolutional]
batch_normalize=1
filters=1024
size=1
stride=1
pad=0
activation=relu

#conv6/dw
[depthwise_convolutional]
batch_normalize=1
size=3
stride=1
pad=1
activation=relu

#conv6/sep
[convolutional]
batch_normalize=1
filters=1024
size=1
stride=1
pad=0
activation=relu

#pool6
[avgpool]

#fc7
[convolutional]
filters=1000
size=1
stride=1
pad=0
activation=leaky

[softmax]
groups=1

[cost]

四、imagenet训练实验

1、训练一天后,经过两轮多的epoch后,精度:

2、训练两天后,迭代第二天结果:

3\又训练了一天多:

深度学习(七十)darknet 实现编写mobilenet源码的更多相关文章

  1. Tensorflow深度学习之十二:基础图像处理之二

    Tensorflow深度学习之十二:基础图像处理之二 from:https://blog.csdn.net/davincil/article/details/76598474   首先放出原始图像: ...

  2. 并发编程学习笔记(9)----AQS的共享模式源码分析及CountDownLatch使用及原理

    1. AQS共享模式 前面已经说过了AQS的原理及独享模式的源码分析,今天就来学习共享模式下的AQS的几个接口的源码. 首先还是从顶级接口acquireShared()方法入手: public fin ...

  3. 并发编程学习笔记(8)----ThreadLocal的使用及源码分析

    1. ThreadLocal的理解 ThreadLocal,顾名思义,就是线程的本地变量,ThreadLocal会为每个线程创建一个本地变量副本,使得使用ThreadLocal管理的变量在多线程的环境 ...

  4. 【转载】深度解读 java 线程池设计思想及源码实现

    总览 开篇来一些废话.下图是 java 线程池几个相关类的继承结构: 先简单说说这个继承结构,Executor 位于最顶层,也是最简单的,就一个 execute(Runnable runnable) ...

  5. Java并发指南12:深度解读 java 线程池设计思想及源码实现

    ​深度解读 java 线程池设计思想及源码实现 转自 https://javadoop.com/2017/09/05/java-thread-pool/hmsr=toutiao.io&utm_ ...

  6. Java并发包源码学习系列:JDK1.8的ConcurrentHashMap源码解析

    目录 为什么要使用ConcurrentHashMap? ConcurrentHashMap的结构特点 Java8之前 Java8之后 基本常量 重要成员变量 构造方法 tableSizeFor put ...

  7. Deep learning深度学习的十大开源框架

    Google开源了TensorFlow(GitHub),此举在深度学习领域影响巨大,因为Google在人工智能领域的研发成绩斐然,有着雄厚的人才储备,而且Google自己的Gmail和搜索引擎都在使用 ...

  8. JavaScript学习总结(十四)——JavaScript编写类的扩展方法

    在​J​a​v​a​S​c​r​i​p​t​中​可以使​用​类的p​r​o​t​o​t​y​p​e属性来​扩​展​类的属​性​和​方​法,在实际开发当中,当JavaScript内置的那些类所提供的动态 ...

  9. 深度学习(十) GoogleNet

    GoogLeNet Incepetion V1 这是GoogLeNet的最早版本,出现在2014年的<Going deeper with convolutions>.之所以名为“GoogL ...

随机推荐

  1. tomcat配置根目录访问后,部署后第一次访问会出现tomcat的默认界面而非项目首页

    tomcat配置根目录访问后,部署后第一次访问会出现tomcat的默认界面而非项目首页,而重启后会正常,这个原因是因为在配置文件中有如下配置,造成项目加载两次 <Host name=" ...

  2. Stm32F103面向对象编程之GPIO

    STM32F103 GPIO面向对象变成实例 创建一个GPIO对象 GpioClass gStateLed = NEW_GPIO(C, 0, GPIO_Mode_Out_PP); 初始化对象 Gpio ...

  3. Pandas 高级应用 数据分析

    深入pandas 数据处理 三个阶段 数据准备 数据转化 数据聚合 数据准备 加载 组装 合并 - pandas.merge() 拼接 - pandas.concat() 组合 - pandas.Da ...

  4. Flume实例一学习

    cp conf/flume-env.sh.template conf/flume-env.sh 打开flume-env.sh,配置Java环境变量 [root@test1 apache-flume-- ...

  5. Spring MVC 方法注解拦截器

    应用场景,在方法级别对本次调用进行鉴权,如api接口中有个用户唯一标示accessToken,对于有accessToken的每次请求可以在方法加一个拦截器,获得本次请求的用户,存放到request或者 ...

  6. ECMAScript6教程目录

    ECMAScript 6 简介 let 和 const 命令 数组的解构赋值 字符串的扩展 正则的扩展 数值的扩展 函数的扩展 数组的扩展 对象的扩展 Symbol Set 和 Map 数据结构 Pr ...

  7. 做文件上传下载时报这个错com.alibaba.fastjson.JSONException: illegal identifier : \

    ::-exec-] DEBUG c.i.e.m.I.insertDataEmebeding - <== Updates: ::-exec-] ERROR c.i.e.c.CaseArchiveC ...

  8. Angular如何给动态生成的元素绑定事件

    在AngularJS中,操作DOM一般在指令中完成,事件监听机制是在对于已经静态生成的dom绑定事件,而如果在指令中动态生成了DOM节点,动态生成的节点不会被JS事件监听. 举例来说: angular ...

  9. Java网络编程学习A轮_01_目标与基础复习

    A. A轮目标 复习网络编程基础知识,重点学习下TCP三次握手四次挥手,以及可能引发的异常情况. 回顾 Socket 编程,好多年没写(chao)过相关代码了. 重学 NIO,以前学的基本忘光了,毕竟 ...

  10. Decrypting OWIN Authentication Ticket

    参考:https://long2know.com/2015/05/decrypting-owin-authentication-ticket/ AuthServer产生的Token因为没有制定自定义的 ...