深度学习(七十)darknet 实现编写mobilenet源码
一、添加一个新的网络层
(1)parse.c文件中函数string_to_layer_type,添加网络层类型解析:
if (strcmp(type, "[depthwise_convolutional]") == 0) return DEPTHWISE_CONVOLUTIONAL;
(2)darknet.h文件中枚举类型LAYER_TYPE,添加网络层枚举类型:
DEPTHWISE_CONVOLUTIONAL;
(3)parse.c文件中函数parse_network_cfg添加网络层解析后进行构建:
LAYER_TYPE lt = string_to_layer_type(s->type);
if (lt == DEPTHWISE_CONVOLUTIONAL) {
l = parse_depthwise_convolutional(options, params);//自己编写的函数,主要调用了make layer
}
else if(lt == CONVOLUTIONAL){
l = parse_convolutional(options, params);
(4)parse.c 添加参数读取网络层加载文件
A、添加网络层读取参数函数
void load_weights_upto(network *net, char *filename, int start, int cutoff) load depthwise weights;
B、把参数读取到内存上:
void load_depthwise_convolutional_weights(layer l, FILE *fp);
C、以及修改depthwise_convolutional_kenel.cu把读取后的cpu参数拷贝到显存上:
void push_depthwise_convolutional_layer(depthwise_convolutional_layer layer);
(5)parse.c添加参数保存功能:
void save_weights_upto(network net, char *filename, int cutoff): void save_depthwise_convolutional_weights(layer l, FILE *fp); void pull_depthwise_convolutional_layer(depthwise_convolutional_layer layer);
(6)添加network.c中网络层:
int resize_network(network *net, int w, int h)的resize:
if (l.type==DEPTHWISE_CONVOLUTIONAL)
{
resize_depthwise_convolutional_layer(&l, w, h);
}
(7)另外在多卡异步训练的时候,network_kernels.cu的好几个函数也要添加depth_convolutional参数相关的更新设置。
总结为一句话:直接搜索项目中调用:CONVOLUTIONAL的关键子
有调用到卷积层枚举类型的地方,可分离卷积层也要添加相对应的功能。
(8)darknet使用须知:darknet的网络配置文件中的学习率、batch并不是我们平时所说的学习率、batch_size。网络更新所用的学习率为:learning_rate/batch_size,所以学习率不能太小,比如如果学习率设置为0.01,batch=128,那么实际计算的学习率就是0.000078,非常小的一个数值,基本上就是更新不了
二、编写网络层代码:depthwise_convolutional_kernels.cu、depthwise_convolutional_layer.c、depthwise_convolutional_layer.h
三、编写mobilenet网络结构文件:
[net] batch=32 subdivisions=1 height=224 width=224 channels=3 momentum=0.9 decay=0.000 max_crop=320 learning_rate=0.1 policy=poly power=3 max_batches=1600000 #conv1 [convolutional] batch_normalize=1 filters=32 size=3 stride=2 pad=1 activation=relu #conv2_1/dw [depthwise_convolutional] batch_normalize=1 size=3 stride=1 pad=1 activation=relu #conv2_1/sep [convolutional] batch_normalize=1 filters=64 size=1 stride=1 pad=0 activation=relu #conv2_2/dw [depthwise_convolutional] batch_normalize=1 size=3 stride=2 pad=1 activation=relu #conv2_2/sep [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=0 activation=relu #conv3_1/dw [depthwise_convolutional] batch_normalize=1 size=3 stride=1 pad=1 activation=relu #conv3_1/sep [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=0 activation=relu #conv3_2/dw [depthwise_convolutional] batch_normalize=1 size=3 stride=2 pad=1 activation=relu #conv3_2/sep [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=0 activation=relu #conv4_1/dw [depthwise_convolutional] batch_normalize=1 size=3 stride=1 pad=1 activation=relu #conv4_1/sep [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=0 activation=relu #conv4_2/dw [depthwise_convolutional] batch_normalize=1 size=3 stride=2 pad=1 activation=relu #conv4_2/sep [convolutional] batch_normalize=1 filters=512 size=1 stride=1 pad=0 activation=relu #conv5_1/dw [depthwise_convolutional] batch_normalize=1 size=3 stride=1 pad=1 activation=relu #conv5_1/sep [convolutional] batch_normalize=1 filters=512 size=1 stride=1 pad=0 activation=relu #conv5_2/dw [depthwise_convolutional] batch_normalize=1 size=3 stride=1 pad=1 activation=relu #conv5_2/sep [convolutional] batch_normalize=1 filters=512 size=1 stride=1 pad=0 activation=relu #conv5_3/dw [depthwise_convolutional] batch_normalize=1 size=3 stride=1 pad=1 activation=relu #conv5_3/sep [convolutional] batch_normalize=1 filters=512 size=1 stride=1 pad=0 activation=relu #conv5_4/dw [depthwise_convolutional] batch_normalize=1 size=3 stride=1 pad=1 activation=relu #conv5_4/sep [convolutional] batch_normalize=1 filters=512 size=1 stride=1 pad=0 activation=relu #conv5_5/dw [depthwise_convolutional] batch_normalize=1 size=3 stride=1 pad=1 activation=relu #conv5_5/sep [convolutional] batch_normalize=1 filters=512 size=1 stride=1 pad=0 activation=relu #conv5_6/dw [depthwise_convolutional] batch_normalize=1 size=3 stride=2 pad=1 activation=relu #conv5_6/sep [convolutional] batch_normalize=1 filters=1024 size=1 stride=1 pad=0 activation=relu #conv6/dw [depthwise_convolutional] batch_normalize=1 size=3 stride=1 pad=1 activation=relu #conv6/sep [convolutional] batch_normalize=1 filters=1024 size=1 stride=1 pad=0 activation=relu #pool6 [avgpool] #fc7 [convolutional] filters=1000 size=1 stride=1 pad=0 activation=leaky [softmax] groups=1 [cost]
四、imagenet训练实验
1、训练一天后,经过两轮多的epoch后,精度:
2、训练两天后,迭代第二天结果:
3\又训练了一天多:
深度学习(七十)darknet 实现编写mobilenet源码的更多相关文章
- Tensorflow深度学习之十二:基础图像处理之二
Tensorflow深度学习之十二:基础图像处理之二 from:https://blog.csdn.net/davincil/article/details/76598474 首先放出原始图像: ...
- 并发编程学习笔记(9)----AQS的共享模式源码分析及CountDownLatch使用及原理
1. AQS共享模式 前面已经说过了AQS的原理及独享模式的源码分析,今天就来学习共享模式下的AQS的几个接口的源码. 首先还是从顶级接口acquireShared()方法入手: public fin ...
- 并发编程学习笔记(8)----ThreadLocal的使用及源码分析
1. ThreadLocal的理解 ThreadLocal,顾名思义,就是线程的本地变量,ThreadLocal会为每个线程创建一个本地变量副本,使得使用ThreadLocal管理的变量在多线程的环境 ...
- 【转载】深度解读 java 线程池设计思想及源码实现
总览 开篇来一些废话.下图是 java 线程池几个相关类的继承结构: 先简单说说这个继承结构,Executor 位于最顶层,也是最简单的,就一个 execute(Runnable runnable) ...
- Java并发指南12:深度解读 java 线程池设计思想及源码实现
深度解读 java 线程池设计思想及源码实现 转自 https://javadoop.com/2017/09/05/java-thread-pool/hmsr=toutiao.io&utm_ ...
- Java并发包源码学习系列:JDK1.8的ConcurrentHashMap源码解析
目录 为什么要使用ConcurrentHashMap? ConcurrentHashMap的结构特点 Java8之前 Java8之后 基本常量 重要成员变量 构造方法 tableSizeFor put ...
- Deep learning深度学习的十大开源框架
Google开源了TensorFlow(GitHub),此举在深度学习领域影响巨大,因为Google在人工智能领域的研发成绩斐然,有着雄厚的人才储备,而且Google自己的Gmail和搜索引擎都在使用 ...
- JavaScript学习总结(十四)——JavaScript编写类的扩展方法
在JavaScript中可以使用类的prototype属性来扩展类的属性和方法,在实际开发当中,当JavaScript内置的那些类所提供的动态 ...
- 深度学习(十) GoogleNet
GoogLeNet Incepetion V1 这是GoogLeNet的最早版本,出现在2014年的<Going deeper with convolutions>.之所以名为“GoogL ...
随机推荐
- NOIP2014 T4 子矩阵 dfs+dp
最近在狂补题啊QAQ... 打算先把NOIP的干掉吧... 点我看题 链接还是放洛谷的了... 题意:给一个n*m的矩阵,在这个矩阵里选 r 行 c 列,然后这 r 行 c 列所相交的格子为新矩阵的, ...
- 解题报告:hdu2602 Bone collector 01背包模板
2017-09-03 15:42:20 writer:pprp 01背包裸题,直接用一维阵列的做法就可以了 /* @theme: 01 背包问题 - 一维阵列 hdu 2602 @writer:ppr ...
- JVM与垃圾回收机制(GC)和类的生命周期
JVM运行时数据区 GC(垃圾回收机制) 什么是垃圾回收机制: 在系统运行过程中,会产生一些无用的对象,这些对象占据着一定的内存,如果不对这些对象清理回收无用的是对象,可能会导致内存的耗尽,所以垃圾回 ...
- jqueryUI之datepicker日历插件的介绍和使用
jQuery UI很强大,其中的日期选择插件Datepicker是一个配置灵活的插件.我们可以自定义其展示方式,包括日期格式.语言.限制选择日期范围.添加相关按钮以及其它导航等.
- Mercurial的使用心得
本文发表地址:http://www.xiabingbao.com/mercurial/2015/01/22/mercurial-understanding/ 本人接触版本控制的历史 在很久很久以前,我 ...
- Maven 中的dependencies与dependencyManagement的区别
1.dependencyManagement 在Maven中dependencyManagement的作用其实相当于一个对所依赖jar包进行版本管理的管理器 在pom.xml文件中,jar的版本判断的 ...
- express中的错误处理
错误处理 定义错误处理中间件和定义其他中间件一样,除了需要 4 个参数,而不是 3 个,其格式如下 (err, req, res, next).例如: app.use(function(err, re ...
- Python执行Linux系统命令方法
Python执行Linux系统命令的4种方法 (1) os.system 仅仅在一个子终端运行系统命令,而不能获取命令执行后的返回信息 复制代码代码如下: system(command) -> ...
- zen cart 空白页面的解决方案
在安装zen cart 这套CMS时, 有时候会由于修改了某些页面或者是由于环境的某些组件的版本问题导致前台页面出现空白页, 由于在空白页面处没有任何提示, 并且在日志中也没有这样的出错提示, 导致在 ...
- vuejs绑定img 的src
1.显示本地图片: <img src="../../common/images/auth-icon.png" /> 2.绑定变量: <img class=&q ...