题目来源:http://www.patest.cn/contests/mooc-ds/04-%E6%A0%916

In 1953, David A. Huffman published his paper "A Method for the Construction of Minimum-Redundancy Codes", and hence printed his name in the history of computer science. As a professor who gives the final exam problem on Huffman codes, I am encountering a big problem: the Huffman codes are NOT unique. For example, given a string "aaaxuaxz", we can observe that the frequencies of the characters 'a', 'x', 'u' and 'z' are 4, 2, 1 and 1, respectively. We may either encode the symbols as {'a'=0, 'x'=10, 'u'=110, 'z'=111}, or in another way as {'a'=1, 'x'=01, 'u'=001, 'z'=000}, both compress the string into 14 bits. Another set of code can be given as {'a'=0, 'x'=11, 'u'=100, 'z'=101}, but {'a'=0, 'x'=01, 'u'=011, 'z'=001} is NOT correct since "aaaxuaxz" and "aazuaxax" can both be decoded from the code 00001011001001. The students are submitting all kinds of codes, and I need a computer program to help me determine which ones are correct and which ones are not.

Input Specification:

Each input file contains one test case. For each case, the first line gives an integer N (2 <= N <= 63), then followed by a line that contains all the N distinct characters and their frequencies in the following format:

c[1] f[1] c[2] f[2] ... c[N] f[N]

where c[i] is a character chosen from {'0' - '9', 'a' - 'z', 'A' - 'Z', '_'}, and f[i] is the frequency of c[i] and is an integer no more than 1000. The next line gives a positive integer M (<=1000), then followed by M student submissions. Each student submission consists of N lines, each in the format:

c[i] code[i]

where c[i] is the i-th character and code[i] is a string of '0's and '1's.

Output Specification:

For each test case, print in each line either “Yes” if the student’s submission is correct, or “No” if not.

Sample Input:

7
A 1 B 1 C 1 D 3 E 3 F 6 G 6
4
A 00000
B 00001
C 0001
D 001
E 01
F 10
G 11
A 01010
B 01011
C 0100
D 011
E 10
F 11
G 00
A 000
B 001
C 010
D 011
E 100
F 101
G 110
A 00000
B 00001
C 0001
D 001
E 00
F 10
G 11

Sample Output:

Yes
Yes
No
No

题目大意:通过给定的字符及其访问次数,判断给定的编码是否为哈夫曼编码
判断条件:满足条件的编码形成的哈夫曼树可能不同,但其带权路径长度WPL一定相同且最小;且满足前缀码(前缀码是任何字符的编码都不是另一字符编码的前缀,前缀码可以避免二义性)
解题思路
    1.根据输入的节点(字符)以及权重(访问次数),模拟建立哈夫曼树,并求出其WPL
        a.把权重建成一个最小堆(数组实现),然后每次弹出最小堆的最小元素即根节点
        b.构造一个新的节点:从堆中依次弹出两个最小的元素的和作为新节点的权重,再将新节点插入堆中
        c.WPL的值就是所有新节点的权重的和
    2.根据输入的编码计算WPL用来判断是否与哈夫曼树的WPL相同
        WPL等于每个字符编码访问次数与编码长度的乘积之和
    3.根据输入的编码判断是否为前缀码
        双重循环遍历,判断两个字符中某一个字符编码是否是另一个字符编码的前缀

图解建立哈夫曼树的过程中最小堆与哈夫曼树的变化如下:

代码如下:

#include <cstdio>
#include <cstdlib>
#include <cctype>
#include <cstring> #define N 64 //最大字符数
#define M 200 //最大编码长度 int HuffmanWPL(int heap[]); /*模拟建立哈夫曼树,返回WPL*/
void PercolateDown(int heap[], int *Size, int parent); /*从节点parent开始下滤*/
void BuildMinHeap(int heap[], int *Size); /*通过传入的完全二叉树(数组)建立最小堆*/
int DeleteMin(int heap[], int *Size); /*删除堆中最小元素 */
void Insert(int minHeap[], int * Size, int weight); /*向最小堆中插入权重为weight的节点*/
int CountWPL(int f[], char code[][M]); /*计算一种编码的WPL*/
bool IsPrefixcode(char code[][M]); /*判断某种编码是否为前缀码*/
bool IsPrefix(char *s1, char *s2); /*判断两个字符中某一个字符编码是否是另一个字符编码的前缀*/ int n; //全局变量,字符的个数 int main()
{
char ch, code[N][M];
int f[N];
scanf("%d", &n);
for (int i = ; i <= n; i++) {
while(ch = getchar()) {
if (isalpha(ch) || isdigit(ch) || ch == '_') { //如果是字符
scanf("%d", &f[i]); //输出对应的访问次数
break;
}
}
}
int minWPL = HuffmanWPL(f); //通过模拟哈夫曼树得到最小WPL int stusNum; //学生个数(编码种类)
scanf("%d", &stusNum);
for (int i = ; i < stusNum; i++) {
for (int j = ; j <= n; j++) {
while(ch = getchar()) {
if (isalpha(ch) || isdigit(ch) || ch == '_') { //若为字符
scanf("%s", code[j]); //输入对应字符的编码
break;
}
}
}
int thisWPL = CountWPL(f, code);
if (thisWPL == minWPL && IsPrefixcode(code)) //若WPL为最小且为前缀码
printf("Yes\n");
else
printf("No\n");
}
return ;
} bool IsPrefixcode(char code[][M])
{
for (int i = ; i <= n; i++)
for (int j = i+; j <= n; j++)
if (IsPrefix(code[i], code[j]))
return false;
return true;
} bool IsPrefix(char *s1, char *s2)
{
while (s1 && s2 && *s1 == *s2) { //从编码首位向后遍历,当遍历到末端或两者不相等时退出循环
s1++;
s2++;
}
if (*s1 == '\0' || *s2 == '\0') //若遍历到某个字符编码的末端
return true; //则该字符是另一字符的前缀
else
return false;
} int CountWPL(int f[], char code[][M])
{
int WPL = ;
for (int i = ; i <= n; i++)
WPL += f[i] * strlen(code[i]); //权重*编码长
return WPL;
} void PercolateDown(int heap[], int *Size, int parent)
{
int temp = heap[parent];
int i, child; for (i = parent; i* <= (*Size); i = child){
child = * i;
if (child != (*Size) && heap[child+] < heap[child]) //找到值更小的儿子
child++;
if (temp > heap[child]) //如果值比下一层的大
heap[i] = heap[child]; //下滤
else
break;
}
heap[i] = temp;
} void BuildMinHeap(int heap[], int *Size)
{
for (int i = (*Size) / ; i > ; i--) //从最后一个有儿子的节点开始
PercolateDown(heap, Size, i); //向前构造最小堆
} int DeleteMin(int heap[], int *Size)
{
int minElem = heap[]; //最小堆根节点为最小值
heap[] = heap[*Size]; //将最小堆最后一个节点放到根节点处
(*Size)--; //节点数减一
PercolateDown(heap, Size, ); //从根节点开始下滤
return minElem;
} void Insert(int heap[], int * Size, int weight)
{
int i;
for (i = ++(*Size); i > && heap[i/] > weight; i /= ) //先将要插入的节点放最后
heap[i] = heap[i/]; //再上滤
heap[i] = weight;
} int HuffmanWPL(int heap[])
{
int minHeap[N];
int Size = ; for (int i = ; i < n; i++)
minHeap[Size++] = heap[i]; //将构造最小堆的数组初始化
minHeap[Size] = heap[n];
BuildMinHeap(minHeap, &Size); int WPL = ;
for (int i = ; i < n; i++) {
int leftWeight = DeleteMin(minHeap, &Size);
int rightWeight = DeleteMin(minHeap, &Size);
int rootWeight = leftWeight + rightWeight;
WPL += rootWeight;
Insert(minHeap, &Size, rootWeight);
}
return WPL;
}

04-树6. Huffman Codes--优先队列(堆)在哈夫曼树与哈夫曼编码上的应用的更多相关文章

  1. P3378 【模板】堆 (内含左偏树实现)

    P3378 [模板]堆 题解 其实就是一个小根堆啦,STL就可以解决,但是拥有闲情雅致的我学习了Jelly_Goat的左偏树,增加了代码长度,妙啊 Solution 1 STL STL 里面prior ...

  2. 05-树9 Huffman Codes

    哈夫曼树 Yes 需满足两个条件:1.HuffmanTree 结构不同,但WPL一定.子串WPL需一致 2.判断是否为前缀码 开始判断用的strstr函数,但其传值应为char *,不能用在strin ...

  3. 05-树9 Huffman Codes及基本操作

    哈夫曼树与哈弗曼编码 哈夫曼树 带权路径长度(WPL):设二叉树有n个叶子结点,每个叶子结点带有权值 Wk,从根结点到每个叶子结点的长度为 Lk,则每个叶子结点的带权路径长度之和就是: WPL = 最 ...

  4. 哈夫曼树(C++优先队列的使用)

       给定n个权值作为n个叶子结点,构造一棵二叉树,若带权路径长度达到最小,称为哈夫曼树(Huffman Tree).哈夫曼树是带权路径长度最短的树,权值较大的结点离根较近.    构造 假设有n个权 ...

  5. PTA 05-树9 Huffman Codes (30分)

    题目地址 https://pta.patest.cn/pta/test/16/exam/4/question/671 5-9 Huffman Codes   (30分) In 1953, David ...

  6. 数据结构慕课PTA 05-树9 Huffman Codes

    题目内容 In 1953, David A. Huffman published his paper "A Method for the Construction of Minimum-Re ...

  7. 【algo&ds】【吐血整理】4.树和二叉树、完全二叉树、满二叉树、二叉查找树、平衡二叉树、堆、哈夫曼树、B树、字典树、红黑树、跳表、散列表

    本博客内容耗时4天整理,如果需要转载,请注明出处,谢谢. 1.树 1.1树的定义 在计算机科学中,树(英语:tree)是一种抽象数据类型(ADT)或是实作这种抽象数据类型的数据结构,用来模拟具有树状结 ...

  8. PAT 05-树8 Huffman Codes

    以现在的生产力,是做不到一天一篇博客了.这题给我难得不行了,花了两天时间在PAT上还有测试点1没过,先写上吧.记录几个做题中的难点:1.本来比较WPL那块我是想用一个函数实现的,无奈我对传字符串数组无 ...

  9. 树-哈夫曼树(Huffman Tree)

    概述 哈夫曼树:树的带权路径长度达到最小. 构造规则 1. 将w1.w2.-,wn看成是有n 棵树的森林(每棵树仅有一个结点): 2. 在森林中选出根结点的权值最小的两棵树进行合并,作为一棵新树的左. ...

随机推荐

  1. AndroidStudio引入AAR依赖

    title: AndroidStudio引入AAR依赖 date: 2016-08-10 00:25:57 tags: [aar] categories: [Tool,Gradle] --- 概述 本 ...

  2. underscore.js源码解析(二)

    前几天我对underscore.js的整体结构做了分析,今天我将针对underscore封装的方法进行具体的分析,代码的一些解释都写在了注释里,那么废话不多说进入今天的正文. 没看过上一篇的可以猛戳这 ...

  3. $_SERVER['SCRIPT_FILENAME'] 与 __FILE__ 区别

    PHP $_SERVER['SCRIPT_FILENAME'] 与 __FILE__ 的区别 PHP $_SERVER['SCRIPT_FILENAME'] 与 __FILE__ 通常情况下,PHP ...

  4. C++:构造函数1——普通构造函数

    前言:构造函数是C+中很重要的一个概念,这里对其知识进行一个简单的总结 一.构造函数的定义 1.类中的构造函数名与类名必须相同 2.构造函数没有函数的返回类值型说明符 [特别注意]: a.构造函数的返 ...

  5. 【每日scrum】NO.9

    (1)这是我们冲刺的最后一天,晚上我们的团队进行了收尾工作:第一阶段的任务基本完成,软件主要实现了校园景点照片以及对应的介绍,查询最短路径,查询涉及相关景点的查询,查询全部路径,基本界面的设计,导航功 ...

  6. .NET Core使用EF分页查询数据报错:OFFSET语法错误问题

    在Asp.Net Core MVC项目中使用EF分页查询数据时遇到一个比较麻烦的问题,系统会报如下错误: 分页查询代码: ) * condition.PageSize).Take(condition. ...

  7. css选择器和新增UI样式总结

    经过两天的学习,初步对css3选择器和新增UI样式有了进一步的理解.

  8. PHP中类和对象

    面向对象中的基本概念 类和对象 对象:  万物皆对象: 类: 任何对象,都可以人为“规定”为某种类型(类别): class  Person{ var  $name ; var  $age; var   ...

  9. MacOS & 如何在当前文件下打开 terminal

    MacOS & 如何在当前文件下打开 terminal macbook 如何在文件夹中 打开 terminal https://www.cnblogs.com/yjmyzz/p/3662507 ...

  10. 对Spark2.2.0文档的学习2-Job Scheduling

    Job Scheduling Link:http://spark.apache.org/docs/2.2.0/job-scheduling.html 概况: (1)集群中多个应用的调度主要考虑的是不同 ...