Selective Search for Object Recognition
http://blog.csdn.net/charwing/article/details/27180421
Selective Search for Object Recognition
是J.R.R. Uijlings发表在2012 IJCV上的一篇文章。主要介绍了选择性搜索(Selective Search)的方法。选择性搜索综合了蛮力搜索(exhaustive search)和分割(segmentation)的方法。选择性搜索意在找出可能的目标位置来进行物体的识别。与传统的单一策略相比,选择性搜索提供了多种策略,并且与蛮力搜索相比,大幅度降低搜索空间,让我们可以用到更好的识别算法。
现实中,很多图像是包含多类别,多层次的信息的,如上图。所以我们要用到多层分割的方法,并且要用多种分割策略。
(一)选择性搜索(selectivesearch)
1. 分层分组:区域包含的信息比像素多,所以我们的特征是基于区域的。为了得到一些小的初始化的区域,用的是[13]中区域划分的方法。
[13]具体看http://blog.sciencenet.cn/blog-261330-722530.html
然后我们的分层分组算法如下:
我们首先用[13]得到一些初始化的区域R={r1,….rn}
计算出每个相邻区域的相似性s(ri,rj)
1. 找出相似性最大的区域max(S)={ri,rj}
2. 合并rt=ri∪rj
3. 从S集合中,移走所有与ri,rj相关的数据
4. 计算新集合rt与所有与它相邻区域的相似性s(rt,r*)
5. R=R∪rt
直到S集合为空,重复1~5。
2. 各种分割策略
关于s(ri,rj)的计算,我们有多种方法,但要注意的是这些相似性特征应该是可以传递的。如当我们合并ri和rj成rt时,rt的特征可以由ri和rj直接计算,而不需要根据他们每个像素点的值进行重新计算。
(1) 多种颜色模型(color model):文章共比较了8种颜色模型
(2) 相似性准则的补充(complementary similarity measure)
共介绍了四种准则,每一种都是可以快速计算的。
Scolor(ri,rj)用于计算ri,rj的相似性。对每个区域,我们都可以得到一个一维的颜色分布直方图。直方图一共有25个区间,区域i的颜色分布直方图为
如果有3个颜色通道,则n=75。还要用L1 norm来进行归一化。
当i和j合并成t,区域t的颜色分布直方图可以用下面式子进行计算:
t 的size用下面式子计算:
Stexture(ri,rj)我们可以用到SIFT(局部特征描述子)
SIFT介绍见:http://www.cnblogs.com/saintbird/archive/2008/08/20/1271943.html
如果有3个颜色通道,n=240=8*3*10,同理得到区域i的纹理直方图要用L1norm归一化。
同理,纹理的传递性也可以用(2)式解决。
size(im)表示整个图片的像素数目。
Sfill (ri,rj)鼓励有相交或者有包含关系的区域先合并。
BBij指包含i,j区域的最小外包区域。
3. 初始化区域
用[13]得到的初始化区域可以根据阈值k得到不同的结果。
(二)用选择性搜索进行识别(object recognition using selective search)
1. 训练数据的产生
在训练数据上,标注出目标区域,如上图中绿色高亮区域的奶牛,将这些标注区域作为正样本。使用selective search产生目标假设区域(也就是若干个分割区域)。将分割区域的外接矩形和目标标注区域的重叠度在20%~50%之间的区域标注为负样本。我们规定负样本之间不能有超过70%的重叠。
有了正样本和负样本之后,我们用的特征提取方法是:
color-SIFT descriptors[32]+a finer spatialpyramid division[18]
然后进行SVM训练。
2. 迭代训练
采用迭代训练方式,在每次训练完成之后,挑选出false positives样本,并将其加入到训练样本中,其实这便是增加了困难样本数。使用其进行模型训练,直到收敛(精度不在产生变化)。
(三)评价(evaluation)
文章给出了一些判断标准。
ABO(Average Best Overlap)
G应该是物体所在的目标区域。L是selective search算法算出的候选区域。找出Selective Search算法中与该类目标区域覆盖最多的区域。覆盖率由(8)式计算。然后再除以该类的数目。
MABO(Mean Average Best Overlap)就是计算每一类的ABO值,再求均值。
之后的实验都是基于这两个评判标准的,详细结果看论文。
本文提到的Reference:
[13] P. F. Felzenszwalb and D. P.Huttenlocher. Efficient Graph-Based Image Segmentation. IJCV, 59:167–181, 2004.
[18] S. Lazebnik, C. Schmid, and J. Ponce.Beyond bags of features: Spatial pyramid matching for recognizing natural scenecategories. In CVPR, 2006.
[32] K. E. A. van de Sande, T. Gevers, andC. G. M. Snoek. Evaluating color descriptors for object and scenerecognition.TPAMI, 32:1582–1596, 2010.
Selective Search for Object Recognition的更多相关文章
- Notes on 'Selective Search For Object Recognition'
UijlingsIJCV2013, Selective Search For Object Recognition code 算法思想 利用分割算法将图片细分成很多region, 或超像素. 在这个基 ...
- 论文笔记:Selective Search for Object Recognition
与 Selective Search 初次见面是在著名的物体检测论文 「Rich feature hierarchies for accurate object detection and seman ...
- 目标检测--Selective Search for Object Recognition(IJCV, 2013)
Selective Search for Object Recognition 作者: J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, A. ...
- 机器学习:Selective Search for Object Recognition
今天介绍 IJCV 2013 年的一篇文章,Selective Search for Object Recognition,这个是后面著名的DL架构 R-CNN 的基础,后续介绍 R-CNN 的时候, ...
- [论文理解]Selective Search for Object Recognition
Selective Search for Object Recognition 简介 Selective Search是现在目标检测里面非常常用的方法,rcnn.frcnn等就是通过selective ...
- 【计算机视觉】Selective Search for Object Recognition论文阅读3
Selective Search for Object Recoginition surgewong@gmail.com http://blog.csdn.net/surgewong 在前 ...
- 【计算机视觉】Selective Search for Object Recognition论文阅读2
Selective Search for Object Recognition 是J.R.R. Uijlings发表在2012 IJCV上的一篇文章.主要介绍了选择性搜索(Selective Sear ...
- 【计算机视觉】Selective Search for Object Recognition论文阅读1
Selective Search for Object Recognition 作者: J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, A. ...
- Selective Search for Object Recognition 论文笔记【图片目标分割】
这篇笔记,仅仅是对选择性算法介绍一下原理性知识,不对公式进行推倒. 前言: 这篇论文介绍的是,如果快速的找到的可能是物体目标的区域,不像使用传统的滑动窗口来暴力进行区域识别.这里是使用算法从多个维度对 ...
随机推荐
- 基于Mininet测量路径的损耗率
基于Mininet测量路径的损耗率 控制器采用POX,基于OVS仿真 Mininet脚本 创建Node mininet.node Node 创建链路连接 mininet.link TCLink 设置i ...
- Hibernate查询的六种方式
Hibernate查询的六种方式 分别是HQL查询,对象化查询Criteria方法,动态查询DetachedCriteria,例子查询,sql查询,命名查询. 如果单纯的使用hibernate ...
- mininet实验 连接floodlight控制器
参考博客一 参考博客二 事先准备-floodlight安装 Java安装方法及环境变量配置 执行ifconfig命令获取floodlight所在服务器的IP地址. 1.启动floodlight jav ...
- 第二次c++作业(觉得渐渐入门系列)
其实说实话,我还是不敢很确定地说面向对象和面向过程这两种语言,我确实能分得开,但是我觉得倒是比以前好很多了.//(大概是谈了对象,知道了什么是面向对象编程) 1.从个人角度来说, a:面向过程就是-- ...
- whu Problem 1537 - A - Stones I 贪心
题目链接: http://acm.whu.edu.cn/land/problem/detail?problem_id=1537 Stones I Time Limit: 1000MSMemory Li ...
- 不要USB数据线调试Android开发
不管是过去Eclipse还是现在的Android Studio开发Android,运行或者调试时都会利用USB数据线连接电脑和手机,特别是当现在的手机只有一个Type-c接口,意味着,插上后,啥也干不 ...
- EF动态排序
转载的代码,改天再研究 public PageData<T> FindAll(int PageIndex, int PageSize, Expression<Func<T, b ...
- NFS 它的目的就是想让不同的机器、不同的作业系统可以彼此分享个别的档案啦
NFS即网络文件系统,是FreeBSD支持的文件系统中的一种,它允许网络中的计算机之间通过TCP/IP网络共享资源.在NFS的应用中,本地NFS的客户端应用可以透明地读写位于远端NFS服务器上的文件, ...
- vbs习题
练习题: 1.输入3个数,输出其中最大的那个值. Option Explicit Dim intA,intB,intC intA=CInt(InputBox("请输入a:")) i ...
- 规则引擎之easyRules
规则引擎听起来是蛮高深的一个词语,但透过现象看本质,Martin Fowler 有如下言: You can build a simple rules engine yourself. All you ...