【题意】给定n和m,求1~n从高位到低位连接%m的结果。n=11时,ans=1234567891011%m。n<=10^18,m<=10^9。

【算法】递推+矩阵快速幂

【题解】

考虑枚举位数个数k,对于不同的k单独递推,设f[i]表示1~i的答案,则有:

$$f_n=f_{n-1}*10^k+i$$

转化为矩阵递推式,则有:

$$\begin{vmatrix}10^k & 1 & 1\\ 0 & 1 & 1\\0 & 0 & 1\end{vmatrix} \times \begin{vmatrix}f_n \\ n\\1 \end{vmatrix}=\begin{vmatrix}f_{n+1}\\n+1\\1\end{vmatrix}$$

转化为幂形式,则有:

$$\begin{vmatrix}10^k & 1 & 1\\ 0 & 1 & 1\\0 & 0 & 1\end{vmatrix}^n \times \begin{vmatrix}f_i \\ i\\1 \end{vmatrix}=\begin{vmatrix}f_{i+n}\\i+n\\1\end{vmatrix}$$

分段进行矩阵快速幂即可。

注意读入的n是long long。

#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const int N=;
int c[N][N],ANS[N][N],A[N][N],m;
ll n;///
void multply(int a[N][N],int b[N][N]){
for(int i=;i<=;i++){
for(int j=;j<=;j++){
c[i][j]=;
for(int k=;k<=;k++){
c[i][j]=(c[i][j]+1ll*a[i][k]*b[k][j]%m)%m;
}
}
}
for(int i=;i<=;i++)for(int j=;j<=;j++)b[i][j]=c[i][j];
}
void solve(ll p,int &f,int x,int k){
memset(A,,sizeof(A));
A[][]=A[][]=A[][]=A[][]=A[][]=;A[][]=k;
ANS[][]=f;ANS[][]=x%m;ANS[][]=;
while(p){
if(p&)multply(A,ANS);
multply(A,A);
p>>=;
}
f=ANS[][];
}
int main(){
scanf("%lld%d",&n,&m);
ll x=,y=;
int k=%m,ans=;
while(x+y<n){
solve(y,ans,x%m,k);//
x+=y;y*=;k=1ll*k*%m;
}
solve(n-x,ans,x%m,k);
printf("%d",ans%m);
return ;
}

【bzoj】2326 [HNOI2011]数学作业的更多相关文章

  1. BZOJ 2326: [HNOI2011]数学作业( 矩阵快速幂 )

    BZOJ先剧透了是矩阵乘法...这道题显然可以f(x) = f(x-1)*10t+x ,其中t表示x有多少位. 这个递推式可以变成这样的矩阵...(不会用公式编辑器...), 我们把位数相同的一起处理 ...

  2. [BZOJ 2326] [HNOI2011] 数学作业 【矩阵乘法】

    题目链接:BZOJ - 2326 题目分析 数据范围达到了 10^18 ,显然需要矩阵乘法了! 可以发现,向数字尾部添加一个数字 x 的过程就是 Num = Num * 10^k + x .其中 k ...

  3. bzoj 2326: [HNOI2011]数学作业

    #include<cstdio> #include<iostream> #include<cstring> #include<cmath> #defin ...

  4. bzoj 2326: [HNOI2011]数学作业【dp+矩阵快速幂】

    矩阵乘法一般不满足交换律!!所以快速幂里需要注意乘的顺序!! 其实不难,设f[i]为i的答案,那么f[i]=(f[i-1]w[i]+i)%mod,w[i]是1e(i的位数),这个很容易写成矩阵的形式, ...

  5. BZOJ 2326: [HNOI2011]数学作业(矩阵乘法)

    传送门 解题思路 NOIp前看到的一道题,当时想了很久没想出来,NOIp后拿出来看竟然想出来了.注意到有递推\(f[i]=f[i-1]*poww[i]+i\),\(f[i]\)表示\(1-i\)连接起 ...

  6. 2326: [HNOI2011]数学作业 - BZOJ

    首先是DP,分段DP(按位数讨论) 然后每一段构造出它对应的矩阵,用矩阵快速幂加速 type matrix=..,..]of int64; var n,m:int64; a,b,c,d:matrix; ...

  7. bzoj2326: [HNOI2011]数学作业

    矩阵快速幂,分1-9,10-99...看黄学长的代码理解...然而他直接把答案保存在最后一行(没有说明...好吧应该是我智障这都不知道... #include<cstdio> #inclu ...

  8. [luogu P3216] [HNOI2011]数学作业

    [luogu P3216] [HNOI2011]数学作业 题目描述 小 C 数学成绩优异,于是老师给小 C 留了一道非常难的数学作业题: 给定正整数 N 和 M,要求计算 Concatenate (1 ...

  9. P3216 [HNOI2011]数学作业 (矩阵快速幂)

    P3216 [HNOI2011]数学作业 题目描述 小 C 数学成绩优异,于是老师给小 C 留了一道非常难的数学作业题: 给定正整数 NN 和 MM ,要求计算 Concatenate (1 .. N ...

随机推荐

  1. android入门 — Service

    Service完全在后台运行,没有用户界面.使用的时候先创建Service子类,然后在AndroidManifest.xml中进行注册,同时可以通过<intent-filter.../>进 ...

  2. http://deepdish.io/2015/04/28/creating-lmdb-in-python/

    http://deepdish.io/2015/04/28/creating-lmdb-in-python/

  3. 从理论到实践,全方位认识DNS

    从理论到实践,全方位认识DNS 2015-11-23 程序员之家 作者:selfboot 原文:http://segmentfault.com/a/1190000003956853 对于 DNS(Do ...

  4. 【转】MySQL数据类型

    1.整型 MySQL数据类型 含义(有符号) tinyint(m) 1个字节  范围(-128~127) smallint(m) 2个字节  范围(-32768~32767) mediumint(m) ...

  5. php中扩展pecl与pear

    要为大家分享的内容是PECL 和 PEAR 他们之间的不同和相同之处. PEAR 是“PHP Extension and Application Repository”的缩写,即PHP扩展和应用仓库. ...

  6. Java多线程 -join用法

    阿里面试官问我这个问题,我仔细总结了一下: 参考:sleep.yield.wait.join的区别(阿里面试) 1. join()介绍 join() 定义在Thread.java中.join() 的作 ...

  7. 【移动端debug-3】部分安卓机型不触发touchend事件的解决方案

    最近在项目中遇到一个奇怪的问题,有一个需求是这样:页面上有一个按钮,滚动页面时让它消失,停止滚动时让它显示. 常规思路: step1.监听touchstart事件,记录Touch对象中pageY初始值 ...

  8. 【数据库_Postgresql】实体类映射问题之不执行sql语句

    后台controller到dao都没问题,前台页面接收的是一个实体类对象,在service层接收的也是对象,传入mapper里面的也是对象,没有用map,但是打印台却不执行sql语句,也没有明显错误提 ...

  9. BZOJ3747 POI2015Kinoman(线段树)

    考虑固定左端点,求出该情况下能获得的最大值.于是每次可以在某数第一次出现的位置加上其价值,第二次出现的位置减掉其价值,查询前缀最大值就可以了.每次移动左端点在线段树上更新即可. #include< ...

  10. 【刷题】BZOJ 2754 [SCOI2012]喵星球上的点名

    Description a180285幸运地被选做了地球到喵星球的留学生.他发现喵星人在上课前的点名现象非常有趣. 假设课堂上有N个喵星人,每个喵星人的名字由姓和名构成.喵星球上的老师会选择M个串来点 ...