TensorFlow目标检测(object_detection)api使用
请根据 models/blob/master/research/object_detection/g3doc/
目录下的 installation.md 配置好你的环境
环境搭建可参考:基于win10,GPU的Tensorflow Object Detection API部署及USB摄像头目标检测
1. 测试opencv调用usb,c++和python两个版本
在Ubuntu16.04安装OpenCV3.1并实现USB摄像头图像采集
import cv2
cv2.namedWindow('testcamera', cv2.WINDOW_NORMAL) capture = cv2.VideoCapture(0)
print (capture.isOpened())
num = 0 while 1:
ret, img = capture.read()
cv2.imshow('testcamera', img)
key = cv2.waitKey(1)
num += 1
if key==1048603:#<ESC>
break capture.release()
cv2.destroyAllWindows()
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
using namespace cv; int main(int argc, char** argv) {
cvNamedWindow("视频"); CvCapture* capture = cvCreateCameraCapture(-);
IplImage* frame; while() {
frame = cvQueryFrame(capture);
if(!frame) break;
cvShowImage("视频", frame); char c = cvWaitKey();
if(c==) break;
} cvReleaseCapture(&capture);
cvDestroyWindow("视频");
return ;
}
2. GPU的Tensorflow Object Detection API部署及USB摄像头目标检测
import numpy as np
import os
import six.moves.urllib as urllib
import sys
import tarfile
import tensorflow as tf
import zipfile
import cv2
import time from collections import defaultdict
from io import StringIO
from matplotlib import pyplot as plt
from PIL import Image # This is needed since the notebook is stored in the object_detection folder.
sys.path.append("..") from utils import label_map_util
from utils import visualization_utils as vis_util # What model to download.
MODEL_NAME = 'ssd_mobilenet_v1_coco_2017_11_17'
#MODEL_NAME = 'faster_rcnn_resnet101_coco_11_06_2017'
#MODEL_NAME = 'ssd_inception_v2_coco_11_06_2017'
MODEL_FILE = MODEL_NAME + '.tar.gz' # Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb' # List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = os.path.join('/home/dsp/ranjiewen/tensorflow_models/models/research/object_detection/data', 'mscoco_label_map.pbtxt') #extract the ssd_mobilenet
start = time.clock()
NUM_CLASSES = 90
opener = urllib.request.URLopener()
#opener.retrieve(DOWNLOAD_BASE + MODEL_FILE, MODEL_FILE)
tar_file = tarfile.open(MODEL_FILE)
for file in tar_file.getmembers():
file_name = os.path.basename(file.name)
if 'frozen_inference_graph.pb' in file_name:
tar_file.extract(file, os.getcwd())
end= time.clock()
print ('load the model',(end-start)) detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='') label_map = label_map_util.load_labelmap(PATH_TO_LABELS) categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories) cap = cv2.VideoCapture(0)
print (cap.isOpened())
with detection_graph.as_default():
with tf.Session(graph=detection_graph) as sess:
writer = tf.summary.FileWriter("logs/", sess.graph)
sess.run(tf.global_variables_initializer()) while(1): print("-------")
ret, frame = cap.read()
start = time.clock()
if cv2.waitKey(1) & 0xFF == ord('q'):
break
image_np=frame
# the array based representation of the image will be used later in order to prepare the
# result image with boxes and labels on it.
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(image_np, axis=0)
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
# Each box represents a part of the image where a particular object was detected.
boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
# Each score represent how level of confidence for each of the objects.
# Score is shown on the result image, together with the class label.
scores = detection_graph.get_tensor_by_name('detection_scores:0')
classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
# Actual detection.
(boxes, scores, classes, num_detections) = sess.run(
[boxes, scores, classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
# Visualization of the results of a detection.
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=6)
end = time.clock()
print ('frame fps:',1.0/(end - start))
#print 'frame:',time.time() - start
cv2.imshow("capture", image_np)
cv2.waitKey(1)
cap.release()
cv2.destroyAllWindows()
- 速度感觉还可以 。。。
TensorFlow目标检测(object_detection)api使用的更多相关文章
- tensorflow目标检测API之训练自己的数据集
1.训练文件的配置 将生成的csv和record文件都放在新建的mydata文件夹下,并打开object_detection文件夹下的data文件夹,复制一个后缀为.pbtxt的文件到mtdata文件 ...
- tensorflow目标检测API之建立自己的数据集
1 收集数据 为了方便,我找了11张月儿的照片做数据集,如图1,当然这在实际应用过程中是远远不够的 2 labelImg软件的安装 使用labelImg软件(下载地址:https://github.c ...
- tensorflow目标检测API安装及测试
1.环境安装配置 1.1 安装tensorflow 安装tensorflow不再仔细说明,但是版本一定要是1.9 1.2 下载Tensorflow object detection API 下载地址 ...
- 实战小项目之基于yolo的目标检测web api实现
上个月,对微服务及web service有了一些想法,看了一本app后台开发及运维的书,主要是一些概念性的东西,对service有了一些基本了解.互联网最开始的构架多是cs构架,浏览器兴起以后,变成了 ...
- tensorflow2.4与目标检测API在3060显卡上的配置安装
目前,由于3060显卡驱动版本默认>11.0,因此,其不能使用tensorflow1版本的任何接口,所以学习在tf2版本下的目标检测驱动是很有必要的,此配置过程同样适用于任何30系显卡配置tf2 ...
- (转)如何用TensorLayer做目标检测的数据增强
数据增强在机器学习中的作用不言而喻.和图片分类的数据增强不同,训练目标检测模型的数据增强在对图像做处理时,还需要对图片中每个目标的坐标做相应的处理.此外,位移.裁剪等操作还有可能使得一些目标在处理后只 ...
- Tensorflow Object_Detection 目标检测 笔记
Tensorflow models Code:https://github.com/tensorflow/models 编写时间:2017.7 记录在使用Object_Detection 中遇到的问题 ...
- 目标检测 - Tensorflow Object Detection API
一. 找到最好的工具 "工欲善其事,必先利其器",如果你想找一个深度学习框架来解决深度学习问题,TensorFlow 就是你的不二之选,究其原因,也不必过多解释,看过其优雅的代码架 ...
- tensorflow利用预训练模型进行目标检测(一):安装tensorflow detection api
一.tensorflow安装 首先系统中已经安装了两个版本的tensorflow,一个是通过keras安装的, 一个是按照官网教程https://www.tensorflow.org/install/ ...
随机推荐
- js获取url链接地址的参数
访问地址为:http://XXX.com?style=green <script language="javascript"> var getArgs = functi ...
- LR 报错误: C interpreter run time error: Error -- Unresolved symbol : vuser_end解决方法
Action.c(33): Error: C interpreter run time error: Action.c (33): Error -- Unresolved symbol : vuse ...
- ref:ThinkPHP Builder.php SQL注入漏洞(<= 3.2.3)
ThinkPHP Builder.php SQL注入漏洞(<= 3.2.3) ref:https://www.jianshu.com/p/18d06277161e TimeSHU 2018.04 ...
- Python并发编程-进程池及异步方式
进程池的基本概念 为什么有进程池的概念 效率问题 每次开启进程,都需要开启属于这个进程的内存空间 寄存器,堆栈 进程过多,操作系统的调度 进程池 python中的 先创建一个属于进程的池子 这个池子指 ...
- angular4 监听input框输入值的改变
angular中一般控件会有change事件,但是如果某些控件没有这个事件 我们如何监听值的变化呢? 对于双向绑定的值,当值改变后监听事件有如下写法: 1. 如果是ngModel可以用ngModelC ...
- Java变量和运算符
1.变量 变量概述 什么是变量?变量是一个内存中的小盒子(小容器),容器是什么?生活中也有很多容器,例如水杯是容器,用来装载水:你家里的大衣柜是容器,用来装载衣裤:饭盒是容器,用来装载饭菜.那么变量是 ...
- Unity Shader 之 透明效果
透明效果 透明效果一般有两种实现方法: 第一种,使用透明度测试(Alpha Test) 第二种,使用透明度混合(Alpha Blending) 透明度测试和透明度混合机制: 透明度测试(Alpha T ...
- 【BZOJ 3160】 3160: 万径人踪灭 (FFT)
3160: 万径人踪灭 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 1440 Solved: 799 Description Input Outp ...
- CodeForces 602C The Two Routes(最短路)
Description In Absurdistan, there are n towns (numbered 1 through n) and m bidirectional railways. T ...
- 【BJOI2014】大融合【LCT】
闲着没事写篇题解 传送门 LCT维护子树的模板题 树链剖分中,子树可以用dfs序维护.但LCT你总不可能动态维护dfs序啊 LCT之所以不能直接维护子树,是因为LCT只能维护它的重儿子.我们把这棵子树 ...