c++动态规划dp算法题
问题1:找硬币,换钱的方法
输入:
- penny数组代表所有货币的面值,正数不重复
- aim小于等于1000,代表要找的钱
输出:
换钱的方法总数
解法1:经典dp,空间复杂度O(n*aim)
class Exchange {
public:
int countWays(vector<int> penny, int n, int aim) {
if (penny.empty()||n == 0)
return 0;
vector<vector<int> > dp(n,vector<int>(aim+1)); //二维数组dp
for (int i = 0;i < n;i++) {
dp[i][0] = 1;
}
for (int j = 1;j < aim+1;j++) {
dp[0][j] = j%penny[0] == 0?1:0; //只需要算dp[0][j]
}
for (int i = 1;i < n;i++) {
for (int j = 1;j < aim+1;j++) {
dp[i][j] = (j-penny[i]) >= 0?(dp[i-1][j] + dp[i][j-penny[i]]):dp[i-1][j]; //这是关键,不用管penny【i】到底使用了几次,直接减去1次使用就好
}
}
return dp[n-1][aim];
}
};
解法2:与上面的问题一样,只不过在求dp时只使用1维数组来做;使用迭代,时间复杂度一样:
class Exchange {
public:
int countWays(vector<int> penny, int n, int aim) {
vector<int> dp(aim + 1);
for (int i = 0; i <= aim; i++)
if (i % penny[0] == 0)
dp[i] = 1;
for (int i = 1; i < n; i++)
for (int j = 1; j <= aim; j++)
if ( j >= penny[i]) //条件,如果不满足就直接等于上轮的结果,不用做修改
dp[j] += dp[j - penny[i]];
return dp[aim];
}
};
问题2:跳台阶问题:
其实是斐波那契问题,f(n)=f(n-1)+f(n-2)
#include <iostream>
using namespace std;
int main(){
int step;
while(cin>>step){
vector<int> dp(2,1); //初始化赋值
dp[1]=2;
int temp;
for(int i=3;i<=step;i++){
temp=dp[0];
dp[0]=dp[1];
dp[1]=dp[1]+temp;
}
if(step==1) dp[1]=1;;
cout<<dp[1]<<endl;
}
return 0;
}
问题3:走矩阵,求路劲最小和,或者是求整个路径
- n×m的map,则 f(n,m)=min(f(n-1,m),f(n,m-1))+map[n][m];
- 由于这里和问题1类似,可以只用到一个一维数组求解;
class MinimumPath {
public:
int getMin(vector<vector<int> > map, int n, int m) {
vector<int> dp(m,0);
dp[0] = map[0][0];
for (int i = 1,j = 0;i < m;i++,j++) {
dp[i] = map[0][i]+dp[j];
}
for (int i = 1;i < n;i++) {
dp[0] += map[i][0]; //不能忘了dp[0]的更新
for (int j = 1;j < m;j++) {
dp[j] = min(dp[j],dp[j-1])+map[i][j]; //如果求路径,则在这里记录,需要额外存储空间
}
}
return dp[m-1];
}
};
问题4:最长上升子序列问题(LIS)
解法:O(N方)用dp数组的dp[i]记录下以A[i]结尾的递增子序列中最长的长度,计算dp[i+1]时,遍历A[0~i]找到比A[i+1]小的元素,再比较与这些元素对应的dp数组中的值,找到最大的一个再加1,赋值给dp[i+1]。
class LongestIncreasingSubsequence {
public:
int getLIS(vector<int> A, int n) {
if (A.empty()||n == 0)
return 0;
vector<int> dp(n,0);
dp[0] = 1;
int resMax = 0;
for (int i = 1;i < n;i++) {
int tempMax = 0;
for (int j = 0;j < i;j++) {
if (A[i] > A[j])
tempMax = max(tempMax,dp[j]);
}
dp[i] = ++tempMax;
resMax = max(resMax,dp[i]); //记录最大的上升子序列长度,因为当前i可能并不在最长上升子序列中
}
return resMax;
}
};
- 如上的实现复杂度为N方,可以增加归纳的假设,增加b[k]存储长度为k最长子序列最小结尾元素,那么可以利用二分查找,使用logn查找到插入点,对于每次比较,要么直接比较b【k】比它大直接k+1,更新b【k+1】,要么二分查找到位置,更新b【j】,所以最终复杂度为nlogn(如果数据量大的话,使用该算法较好)
- 参考 https://blog.csdn.net/netown_ethereal/article/details/24010381

问题5:最长公共子序列长度(LCS)


上图可以看出使用了斜侧的比较,所以不能再使用1维数组了
class LCS {
public:
int findLCS(string A, int n, string B, int m) {
if (A.empty()||n==0||B.empty()||m==0)
return 0;
vector<vector<int> > dp(n,vector<int>(m));
//下面是两个for的初始化,当出现第一个相等的时,后面的都直接赋值为1;
for (int i = 0;i < m;i++) {
if (A[0] == B[i]) {
for (int j = i;j < m;j++)
dp[0][j] = 1;
break ;
}
}
for (int i = 0;i < n;i++) {
if (B[0] == A[i]) {
for (int j = i;j < n;j++)
dp[j][0] = 1;
break ;
}
}
for (int i = 1;i < n;i++) {
for (int j = 1;j < m;j++) {
if (A[i] == B[j])
dp[i][j] = dp[i-1][j-1]+1;
else
dp[i][j] = max(dp[i-1][j],dp[i][j-1]);
}
}
return dp[n-1][m-1];
}
};
上面的方法中初始化第一行和第一列有点麻烦,增加了额外的语句,可以增加数组一行和一列来优化代码:
class LCS {
public:
int findLCS(string A, int n, string B, int m) {
vector<vector<int> > dp(n+1,vector<int>(m+1,0));
for (int i =1;i<=n ;++i){
for (int j=1; j<=m; ++j){
if (A[i-1] == B[j-1]){
dp[i][j] = dp[i-1][j-1]+1; //第1行也可以照此直接初始化
}
else {
dp[i][j] = max( dp[i-1][j] ,dp[i][j-1]);
}
}
}
return dp[n][m];
}
};
问题6:背包
- N件物品,价值记录在数组V,重量记录在数组W,背包总重量最大为cap,要求总价值最大;
class Backpack {
public:
int maxValue(vector<int> w, vector<int> v, int n, int cap) {
if (w.empty()||v.empty()||n==0||cap==0)
return 0;
vector<vector<int> > dp(n,vector<int>(cap+1));
for (int j = 1;j < cap+1;j++) {
dp[0][j] = w[0] <= j?v[0]:0;
}
for (int i = 0;i < n;i++) {
dp[i][0] = 0;
}
for (int i = 1;i < n;i++) {
for (int j = 1;j < cap+1;j++) {
if (w[i] > j)
dp[i][j] = dp[i-1][j];
else
dp[i][j] = max(dp[i-1][j],v[i]+dp[i-1][j-w[i]]); //由于该问题每个物品最多只能放1件,如果不限制个数的话,则在这里修改条件
}
}
return dp[n-1][cap];
}
};
由于没有用到斜侧的比较,所以可以使用1维的数组:
class Backpack {
public:
int maxValue(vector<int> w, vector<int> v, int n, int cap) {
if (w.empty()||v.empty()||n==0||cap==0)
return 0;
vector<int> dp(cap+1,0);
for (int i = 0;i < n;i++) {
vector<int> last(dp);
for (int j = 1;j < cap+1;j++) {
dp[j] = j < w[i]?last[j]:max(last[j],v[i]+last[j-w[i]]);
}
}
return dp[cap];
}
};
c++动态规划dp算法题的更多相关文章
- 动态规划——DP算法(Dynamic Programing)
一.斐波那契数列(递归VS动态规划) 1.斐波那契数列——递归实现(python语言)——自顶向下 递归调用是非常耗费内存的,程序虽然简洁可是算法复杂度为O(2^n),当n很大时,程序运行很慢,甚至内 ...
- 51NOD 1006 最长公共子序列 Lcs 动态规划 DP 模板题 板子
给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的). 比如两个串为: abcicba abdkscab ab是两个串的子序列,abc也是,abca也是,其中abca是这两个字符串最 ...
- 0-1背包的动态规划算法,部分背包的贪心算法和DP算法------算法导论
一.问题描述 0-1背包问题,部分背包问题.分别实现0-1背包的DP算法,部分背包的贪心算法和DP算法. 二.算法原理 (1)0-1背包的DP算法 0-1背包问题:有n件物品和一个容量为W的背包.第i ...
- 算法-动态规划DP小记
算法-动态规划DP小记 动态规划算法是一种比较灵活的算法,针对具体的问题要具体分析,其宗旨就是要找出要解决问题的状态,然后逆向转化为求解子问题,最终回到已知的初始态,然后再顺序累计各个子问题的解从而得 ...
- 最大子段和的DP算法设计及其效率测试
表情包形象取自番剧<猫咪日常> 那我也整一个 曾几何时,笔者是个对算法这个概念漠不关心的人,由衷地感觉它就是一种和奥数一样华而不实的存在,即便不使用任何算法的思想我一样能写出能跑的程序 直 ...
- 华为笔试——C++平安果dp算法
题目:平安果 题目介绍:给出一个m*n的格子,每个格子里有一定数量的平安果,现在要求从左上角顶点(1,1)出发,每次走一格并拿走那一格的所有平安果,且只能向下或向右前进,最终到达右下角顶点(m,n), ...
- hdu 1421:搬寝室(动态规划 DP + 排序)
搬寝室 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submiss ...
- Bit Operation妙解算法题
5道巧妙位操作的算法题. ***第一道*** 题目描述 给定一个非空整数数组,除了某个元素只出现一次以外,其余每个元素均出现两次.找出那个只出现了一次的元素. 说明: 你的算法应该具有线性时间复杂度. ...
- DP百题练(二)
目录 DP百题练(二) 区间 DP NOI1995 石子合并 IOI1998 Polygon CH5302 金字塔 USACO06FEB Treats for the Cows G/S LG1043 ...
随机推荐
- BZOJ 2190 仪仗队(线性筛欧拉函数)
简化题意可知,实际上题目求得是gcd(i,j)=1(i,j<=n)的数对数目. 线性筛出n大小的欧拉表,求和*2+1即可.需要特判1. # include <cstdio> # in ...
- 最小费用流spfa最小费用路算法模板(pascal)
3.30: 这篇是以前写的,用的还是指针存图,今天又写了个代码,码风稍微好看点. 传送门:http://www.cnblogs.com/Currier/p/6648685.html --------- ...
- Cisco Smart Install远程命令执行漏洞
0x01前言 在Smart Install Client代码中发现了基于堆栈的缓冲区溢出漏洞,该漏洞攻击者无需身份验证登录即可远程执行任意代码.cisco Smart Install是一种“即插即用” ...
- 【转载 save】vim键位图。
留图,备用,copy from 网络
- python基础----列表生成式、生成器表达式
结论: 1.把列表解析的[]换成()得到的就是生成器表达式 2.列表解析与生成器表达式都是一种便利的编程方式,只不过生成器表达式更节省内存 3.Python不但使用迭代器协议,让for循环变得更加通用 ...
- python基础----析构函数__del__
析构方法,当对象在内存中被释放时,自动触发执行. 注:此方法一般无须定义,因为Python是一门高级语言,程序员在使用时无需关心内存的分配和释放,因为此工作都是交给Python解释器来执行,所以,析构 ...
- Linux基础-配置网络、集群内主机名设定、ssh登入、bash命令、通配符(元字符)
作业一:临时配置网络(ip,网关,dns)+永久配置 设置临时网络配置: 配置IP ifcongfig ens33 192.168.16.177/24 (ifconfig 网卡 ip地址 /24 ...
- MATLAB2010安装方法
MATLAB2010安装方法 第一步选择无网络安装. 选择yes,然后点击next 激活序列号在crack文件夹中的txt文档中 这一步按照图片上的显示操作就可以 选择经典安装 按提示操作,这一步事激 ...
- HDU--1874
原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=1874 分析:SPFA|Dijkastra. #include<iostream> #inc ...
- 「Python」pandas入门教程
pandas适合于许多不同类型的数据,包括: 具有异构类型列的表格数据,例如SQL表格或Excel数据 有序和无序(不一定是固定频率)时间序列数据. 具有行列标签的任意矩阵数据(均匀类型或不同类型) ...