[Functional Programming] Working with two functors(Applicative Functors)-- Part1 --.ap
What is applicative functor:
the ability to apply functors to each other.
For example we have tow functors: Container(2), Container(3)
// We can't do this because the numbers are bottled up.
add(Container.of(), Container.of()); // NaN
We cannot just add two functors!
Instead we should do:
const map = (fn, m) => m.map(fn);
const containerOfAdd2 = map(add(), Container.of()); // Container(5)
or
Container.of().chain(two => Container.of().map(add(two)));
Previous solution should work. but there are better way to do it:
1. ap
Container.prototype.ap = function (otherContainer) {
return otherContainer.map(this.$value);
};
As you can see, 'ap' takes a fuctor then applya map to it.
We can see ap:
Container.of().map(add).ap(Container.of()); // Container(5)
Or, we add lift 'add(2)' into Container, then apply Container(3):
Container.of(add()).ap(Container.of()); // Container(5)
Because 'add' is partially applied in add(2), when doing '.ap(Container.of(3))', we give the rest input '3' to it.
Now, we can define applicative functor in programming language:
An applicative functor is a pointed functor with an
ap
method
Note the dependence on pointed.
Laws behind:
F.of(x).map(f) === F.of(f).ap(F.of(x))
Main idea is: lift 'f' (function) into Functor, then 'ap' (apply) another Functor with the value (x).
Some example:
Maybe.of(add).ap(Maybe.of()).ap(Maybe.of()) // Just(5)
Task.of(add).ap(Task.of()).ap(Task.of()) // Task(5)
Equals:
Maybe.of(add()).ap(Maybe.of()) // Just(5)
Task.of(add()).ap(Task.of()) // Task(5)
More examples:
// Http.get :: String -> Task Error HTML const renderPage = curry((destinations, events) => { /* render page */ }); Task.of(renderPage).ap(Http.get('/destinations')).ap(Http.get('/events'));
// Task("<div>some page with dest and events</div>")
// $ :: String -> IO DOM
const $ = selector => new IO(() => document.querySelector(selector)); // getVal :: String -> IO String
const getVal = compose(map(prop('value')), $); // signIn :: String -> String -> Bool -> User
const signIn = curry((username, password, rememberMe) => { /* signing in */ }); IO.of(signIn).ap(getVal('#email')).ap(getVal('#password')).ap(IO.of(false));
// IO({ id: 3, email: 'gg@allin.com' })
----
const R = require('ramda'); class Container {
static of(x) {
return new Container(x);
} constructor(x) {
this.$value = x;
} map (fn) {
return Container.of(fn(this.$value));
} ap (functor) {
return functor.map(this.$value);
} join() {
return this.$value;
} chain(fn) {
return this.map(fn).join();
} inspect() {
return `Container(${this.$value})`;
}
} class Maybe {
get isNothing() {
return this.$value === null || this.$value === undefined;
} get isJust() {
return !this.isNothing;
} constructor(x) {
this.$value = x;
} inspect() {
return this.isNothing ? 'Nothing' : `Just(${this.$value})`;
} // ----- Pointed Maybe
static of(x) {
return new Maybe(x);
} // ----- Functor Maybe
map(fn) {
return this.isNothing ? this : Maybe.of(fn(this.$value));
} // ----- Applicative Maybe
ap(f) {
return this.isNothing ? this : f.map(this.$value);
} // ----- Monad Maybe
chain(fn) {
return this.map(fn).join();
} join() {
return this.isNothing ? this : this.$value;
} // ----- Traversable Maybe
sequence(of) {
this.traverse(of, identity);
} traverse(of, fn) {
return this.isNothing ? of(this) : fn(this.$value).map(Maybe.of);
}
} const add = a => b => a + b;
const map = (fn, m) => m.map(fn);
const notWorking = add(Container.of(2), Container.of(3));
const containerOfAdd2 = map(add(3), Container.of(2));
console.log(containerOfAdd2); // Contianer(5) const works = Container.of(2).chain(v => Container.of(3).map(add(v)));
console.log(works); // Contianer(5) const ap = Container.of(2).map(add).ap(Container.of(3));
console.log(ap) const ap2 = Container.of(add(2)).ap(Container.of(3));
console.log(Maybe.of(add).ap(Maybe.of(2)).ap(Maybe.of(3)))
console.log(Maybe.of(add(2)).ap(Maybe.of(3)))
[Functional Programming] Working with two functors(Applicative Functors)-- Part1 --.ap的更多相关文章
- [Functional Programming] Working with two functors(Applicative Functors)-- Part2 --liftAN
Let's examine a pointfree way to write these applicative calls. Since we know map is equal to of/ap, ...
- UCF Local Programming Contest 2016 J题(二分+bfs)
题目链接如下: https://nanti.jisuanke.com/t/43321 思路: 显然我们要采用二分的方法来寻找答案,给定一个高度如果能确定在这个高度时是否可以安全到达终点,那我们就可以很 ...
- Programming | 中/ 英文词频统计(MATLAB实现)
一.英文词频统计 英文词频统计很简单,只需借助split断句,再统计即可. 完整MATLAB代码: function wordcount %思路:中文词频统计涉及到对"词语"的判断 ...
- Coursera Algorithms Programming Assignment 4: 8 Puzzle (100分)
题目原文:http://coursera.cs.princeton.edu/algs4/assignments/8puzzle.html 题目要求:设计一个程序解决8 puzzle问题以及该问题的推广 ...
- Coursera Algorithms Programming Assignment 3: Pattern Recognition (100分)
题目原文详见http://coursera.cs.princeton.edu/algs4/assignments/collinear.html 程序的主要目的是寻找n个points中的line seg ...
- The 2019 Asia Nanchang First Round Online Programming Contest C. Hello 2019(动态dp)
题意:要找到一个字符串里面存在子序列9102 而不存在8102 输出最小修改次数 思路:对于单次询问 我们可以直接区间dpOn求出最小修改次数 但是对于多次询问 我在大部分题解看到的解释一般是用线段树 ...
- Functional Programming 资料收集
书籍: Functional Programming for Java Developers SICP(Structure and Interpretation of Computer Program ...
- Adaptive AUTOSAR 学习笔记 3 - AP 背景、技术及特征(中文翻译)
本系列学习笔记基于 AUTOSAR Adaptive Platform 官方文档 R20-11 版本.本文从AUTOSAR_EXP_PlatformDesign.pdf开始,一边学习,一边顺带着翻译一 ...
- windows下gVim(Vi/vim)基本使用
Vim 是一个Linux 平台上功能非常强大的编辑器,他是早年的Vi 编辑器的加强版.这个gVim 是windows 版的,并且有了标准的windows 风格的图形界面,所以叫g(graphical) ...
随机推荐
- USACO 控制公司 Controlling Companies
友情链接神犇520的博客 题目: 题目描述 有些公司是其他公司的部分拥有者,因为他们获得了其他公司发行的股票的一部分.(此处略去一句废话)据说,如果至少满足了以下三个条件之一,公司A就可以控制公司B了 ...
- Python开发基础-Day30多线程锁机制
GIL(全局解释器锁) GIL并不是Python的特性,它是在实现Python解析器(CPython)时所引入的一个概念,是为了实现不同线程对共享资源访问的互斥,才引入了GIL 在Cpython解释器 ...
- Unity 2D游戏开发教程之游戏精灵的开火状态
Unity 2D游戏开发教程之游戏精灵的开火状态 精灵的开火状态 “开火”就是发射子弹的意思,在战争类型的电影或者电视剧中,主角们就爱这么说!本节打算为精灵添加发射子弹的能力.因为本游戏在后面会引入敌 ...
- cf 633B A trivial problem
Mr. Santa asks all the great programmers of the world to solve a trivial problem. He gives them an i ...
- 【BZOJ 4229】 4229: 选择 (线段树+树链剖分)
4229: 选择 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 67 Solved: 41 Description 现在,我想知道自己是否还有选择. ...
- vijos Warcraft III 守望者的烦恼
题解 转移方程好写吧 一个一维递推式 然后我们可以构造矩阵优化 嗯,最近学一下递推优化 代码 #include<cstdio> #include<cstring> #inclu ...
- 【裸裸的左偏树】BZOJ1455-罗马游戏
[题目大意] 给出一些数和一些操作.M:合并两个数所在的集合,如果有任意一个数被删除则忽略操作:K:删除某个数所在集合中最小的数. [思路] 裸裸的,复习^ ^ #include<iostrea ...
- bzoj 1004 Cards 组合计数
这道题考察的是组合计数(用Burnside,当然也可以认为是Polya的变形,毕竟Polya是Burnside推导出来的). 这一类问题的本质是计算置换群(A,P)中不动点个数!(所谓不动点,是一个二 ...
- php -- php读取sqlserver中的datetime出现的格式问题
php连接sqlserver2005时,读取出来的数据是01 15 2014 12:00AM, 也就是说日期的格式是MM DD YY hh:mmAM 那如何把它转变成24小时制,且显示的格式为YY-M ...
- 实用在线小工具 -- Google URL Shortener
实用在线小工具 -- Google URL Shortener 当你想分享一些你觉得有趣的东西,但是那个链接太长,以至于贴上去一大片.比如在微博上分享一张图片,然后贴上去图片的链接,url ...