What is applicative functor:

the ability to apply functors to each other.

For example we have tow functors: Container(2), Container(3)

// We can't do this because the numbers are bottled up.
add(Container.of(), Container.of()); // NaN

We cannot just add two functors!

Instead we should do:

const map = (fn, m) => m.map(fn);
const containerOfAdd2 = map(add(), Container.of()); // Container(5)

or

Container.of().chain(two => Container.of().map(add(two)));

Previous solution should work. but there are better way to do it:

1. ap

Container.prototype.ap = function (otherContainer) {
return otherContainer.map(this.$value);
};

As you can see, 'ap' takes a fuctor then applya map to it.

We can see ap:

Container.of().map(add).ap(Container.of()); // Container(5)

Or, we add lift 'add(2)' into Container, then apply Container(3):

Container.of(add()).ap(Container.of()); // Container(5)

Because 'add' is partially  applied in add(2), when doing '.ap(Container.of(3))', we give the rest input '3' to it.

Now, we can define applicative functor in programming language:

An applicative functor is a pointed functor with an ap method

Note the dependence on pointed.

Laws behind:

F.of(x).map(f) === F.of(f).ap(F.of(x))

Main idea is: lift 'f' (function) into Functor, then 'ap' (apply) another Functor with the value (x).

Some example:

Maybe.of(add).ap(Maybe.of()).ap(Maybe.of()) // Just(5)
Task.of(add).ap(Task.of()).ap(Task.of()) // Task(5)

Equals:

Maybe.of(add()).ap(Maybe.of()) // Just(5)
Task.of(add()).ap(Task.of()) // Task(5)

More examples:

// Http.get :: String -> Task Error HTML

const renderPage = curry((destinations, events) => { /* render page */ });

Task.of(renderPage).ap(Http.get('/destinations')).ap(Http.get('/events'));
// Task("<div>some page with dest and events</div>")
// $ :: String -> IO DOM
const $ = selector => new IO(() => document.querySelector(selector)); // getVal :: String -> IO String
const getVal = compose(map(prop('value')), $); // signIn :: String -> String -> Bool -> User
const signIn = curry((username, password, rememberMe) => { /* signing in */ }); IO.of(signIn).ap(getVal('#email')).ap(getVal('#password')).ap(IO.of(false));
// IO({ id: 3, email: 'gg@allin.com' })

----

const R = require('ramda');

class Container {
static of(x) {
return new Container(x);
} constructor(x) {
this.$value = x;
} map (fn) {
return Container.of(fn(this.$value));
} ap (functor) {
return functor.map(this.$value);
} join() {
return this.$value;
} chain(fn) {
return this.map(fn).join();
} inspect() {
return `Container(${this.$value})`;
}
} class Maybe {
get isNothing() {
return this.$value === null || this.$value === undefined;
} get isJust() {
return !this.isNothing;
} constructor(x) {
this.$value = x;
} inspect() {
return this.isNothing ? 'Nothing' : `Just(${this.$value})`;
} // ----- Pointed Maybe
static of(x) {
return new Maybe(x);
} // ----- Functor Maybe
map(fn) {
return this.isNothing ? this : Maybe.of(fn(this.$value));
} // ----- Applicative Maybe
ap(f) {
return this.isNothing ? this : f.map(this.$value);
} // ----- Monad Maybe
chain(fn) {
return this.map(fn).join();
} join() {
return this.isNothing ? this : this.$value;
} // ----- Traversable Maybe
sequence(of) {
this.traverse(of, identity);
} traverse(of, fn) {
return this.isNothing ? of(this) : fn(this.$value).map(Maybe.of);
}
} const add = a => b => a + b;
const map = (fn, m) => m.map(fn);
const notWorking = add(Container.of(2), Container.of(3));
const containerOfAdd2 = map(add(3), Container.of(2));
console.log(containerOfAdd2); // Contianer(5) const works = Container.of(2).chain(v => Container.of(3).map(add(v)));
console.log(works); // Contianer(5) const ap = Container.of(2).map(add).ap(Container.of(3));
console.log(ap) const ap2 = Container.of(add(2)).ap(Container.of(3));
console.log(Maybe.of(add).ap(Maybe.of(2)).ap(Maybe.of(3)))
console.log(Maybe.of(add(2)).ap(Maybe.of(3)))

  

[Functional Programming] Working with two functors(Applicative Functors)-- Part1 --.ap的更多相关文章

  1. [Functional Programming] Working with two functors(Applicative Functors)-- Part2 --liftAN

    Let's examine a pointfree way to write these applicative calls. Since we know map is equal to of/ap, ...

  2. UCF Local Programming Contest 2016 J题(二分+bfs)

    题目链接如下: https://nanti.jisuanke.com/t/43321 思路: 显然我们要采用二分的方法来寻找答案,给定一个高度如果能确定在这个高度时是否可以安全到达终点,那我们就可以很 ...

  3. Programming | 中/ 英文词频统计(MATLAB实现)

    一.英文词频统计 英文词频统计很简单,只需借助split断句,再统计即可. 完整MATLAB代码: function wordcount %思路:中文词频统计涉及到对"词语"的判断 ...

  4. Coursera Algorithms Programming Assignment 4: 8 Puzzle (100分)

    题目原文:http://coursera.cs.princeton.edu/algs4/assignments/8puzzle.html 题目要求:设计一个程序解决8 puzzle问题以及该问题的推广 ...

  5. Coursera Algorithms Programming Assignment 3: Pattern Recognition (100分)

    题目原文详见http://coursera.cs.princeton.edu/algs4/assignments/collinear.html 程序的主要目的是寻找n个points中的line seg ...

  6. The 2019 Asia Nanchang First Round Online Programming Contest C. Hello 2019(动态dp)

    题意:要找到一个字符串里面存在子序列9102 而不存在8102 输出最小修改次数 思路:对于单次询问 我们可以直接区间dpOn求出最小修改次数 但是对于多次询问 我在大部分题解看到的解释一般是用线段树 ...

  7. Functional Programming 资料收集

    书籍: Functional Programming for Java Developers SICP(Structure and Interpretation of Computer Program ...

  8. Adaptive AUTOSAR 学习笔记 3 - AP 背景、技术及特征(中文翻译)

    本系列学习笔记基于 AUTOSAR Adaptive Platform 官方文档 R20-11 版本.本文从AUTOSAR_EXP_PlatformDesign.pdf开始,一边学习,一边顺带着翻译一 ...

  9. windows下gVim(Vi/vim)基本使用

    Vim 是一个Linux 平台上功能非常强大的编辑器,他是早年的Vi 编辑器的加强版.这个gVim 是windows 版的,并且有了标准的windows 风格的图形界面,所以叫g(graphical) ...

随机推荐

  1. POJ3255 Roadblocks [Dijkstra,次短路]

    题目传送门 Roadblocks Description Bessie has moved to a small farm and sometimes enjoys returning to visi ...

  2. Linux_x64_Pwn溢出漏洞

    linux_64与linux_86的区别 linux_64与linux_86的区别主要有两点: 首先是内存地址的范围由32位变成了64位 但是可以使用的内存地址不能大于0x00007fffffffff ...

  3. 请画出Servlet 2.2以上Web Application的基本目录结构

    Java web工程下的webapp或WebContent就是工程的发布文件夹,发布时会把该文件夹发布到tomcat的webapps里. 一个web应用必须要有的目录文件如下: webapp/WebC ...

  4. Learn to Create Everything In a Fragment Shader(译)

    学习在片元着色器中创建一切 介绍 这篇博客翻译自Shadertoy: learn to create everything in a fragment shader 大纲 本课程将介绍使用Shader ...

  5. misaka and last order SCU - 4489 (筛法的灵活应用)

    Time Limit: 1000 MS Memory Limit: 131072 K Description Misaka Mikoto is a main character of the Anim ...

  6. PHP代码重用

    代码重用 include() 和require() 都是载入文件 include()如果载入的文件不存在,提示警告错误,程序还可以继续执行 require()如果载入的文件不存在,致命性错误,程序终止 ...

  7. 【UOJ #206】【APIO 2016】Gap

    http://uoj.ac/problem/206 对于T=1,直接从两端往中间跳可以遍历所有的点. 对于T=2,先求出最小值a和最大值b,由鸽巢原理,答案一定不小于\(\frac{b-a}{N-1} ...

  8. tyvj Easy

    Easy [描述 Description] 某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:(我们来简化一下这个游戏的规则    有n次点击要做,成功了就是o,失败了就是x,分 ...

  9. CodeForces 1063C. Dwarves, Hats and Extrasensory Abilities 交互

    题目大意: 依次给定$n$个点的颜色,要求给定这$n$个点的坐标以及一条可以把他们分成两部分的直线 强制在线(交互) $n \leqslant 30$ 感觉自己真像一个乱搞... 我们只考虑把点放在最 ...

  10. Request Response 跳转页面的理解

    1.response 跳转页面 private void writeContent(String content) { HttpServletResponse response = ((Servlet ...