[Functional Programming] Working with two functors(Applicative Functors)-- Part1 --.ap
What is applicative functor:
the ability to apply functors to each other.
For example we have tow functors: Container(2), Container(3)
// We can't do this because the numbers are bottled up.
add(Container.of(), Container.of()); // NaN
We cannot just add two functors!
Instead we should do:
const map = (fn, m) => m.map(fn);
const containerOfAdd2 = map(add(), Container.of()); // Container(5)
or
Container.of().chain(two => Container.of().map(add(two)));
Previous solution should work. but there are better way to do it:
1. ap
Container.prototype.ap = function (otherContainer) {
return otherContainer.map(this.$value);
};
As you can see, 'ap' takes a fuctor then applya map to it.
We can see ap:
Container.of().map(add).ap(Container.of()); // Container(5)
Or, we add lift 'add(2)' into Container, then apply Container(3):
Container.of(add()).ap(Container.of()); // Container(5)
Because 'add' is partially applied in add(2), when doing '.ap(Container.of(3))', we give the rest input '3' to it.
Now, we can define applicative functor in programming language:
An applicative functor is a pointed functor with an
apmethod
Note the dependence on pointed.
Laws behind:
F.of(x).map(f) === F.of(f).ap(F.of(x))
Main idea is: lift 'f' (function) into Functor, then 'ap' (apply) another Functor with the value (x).
Some example:
Maybe.of(add).ap(Maybe.of()).ap(Maybe.of()) // Just(5)
Task.of(add).ap(Task.of()).ap(Task.of()) // Task(5)
Equals:
Maybe.of(add()).ap(Maybe.of()) // Just(5)
Task.of(add()).ap(Task.of()) // Task(5)
More examples:
// Http.get :: String -> Task Error HTML
const renderPage = curry((destinations, events) => { /* render page */ });
Task.of(renderPage).ap(Http.get('/destinations')).ap(Http.get('/events'));
// Task("<div>some page with dest and events</div>")
// $ :: String -> IO DOM
const $ = selector => new IO(() => document.querySelector(selector)); // getVal :: String -> IO String
const getVal = compose(map(prop('value')), $); // signIn :: String -> String -> Bool -> User
const signIn = curry((username, password, rememberMe) => { /* signing in */ }); IO.of(signIn).ap(getVal('#email')).ap(getVal('#password')).ap(IO.of(false));
// IO({ id: 3, email: 'gg@allin.com' })
----
const R = require('ramda');
class Container {
static of(x) {
return new Container(x);
}
constructor(x) {
this.$value = x;
}
map (fn) {
return Container.of(fn(this.$value));
}
ap (functor) {
return functor.map(this.$value);
}
join() {
return this.$value;
}
chain(fn) {
return this.map(fn).join();
}
inspect() {
return `Container(${this.$value})`;
}
}
class Maybe {
get isNothing() {
return this.$value === null || this.$value === undefined;
}
get isJust() {
return !this.isNothing;
}
constructor(x) {
this.$value = x;
}
inspect() {
return this.isNothing ? 'Nothing' : `Just(${this.$value})`;
}
// ----- Pointed Maybe
static of(x) {
return new Maybe(x);
}
// ----- Functor Maybe
map(fn) {
return this.isNothing ? this : Maybe.of(fn(this.$value));
}
// ----- Applicative Maybe
ap(f) {
return this.isNothing ? this : f.map(this.$value);
}
// ----- Monad Maybe
chain(fn) {
return this.map(fn).join();
}
join() {
return this.isNothing ? this : this.$value;
}
// ----- Traversable Maybe
sequence(of) {
this.traverse(of, identity);
}
traverse(of, fn) {
return this.isNothing ? of(this) : fn(this.$value).map(Maybe.of);
}
}
const add = a => b => a + b;
const map = (fn, m) => m.map(fn);
const notWorking = add(Container.of(2), Container.of(3));
const containerOfAdd2 = map(add(3), Container.of(2));
console.log(containerOfAdd2); // Contianer(5)
const works = Container.of(2).chain(v => Container.of(3).map(add(v)));
console.log(works); // Contianer(5)
const ap = Container.of(2).map(add).ap(Container.of(3));
console.log(ap)
const ap2 = Container.of(add(2)).ap(Container.of(3));
console.log(Maybe.of(add).ap(Maybe.of(2)).ap(Maybe.of(3)))
console.log(Maybe.of(add(2)).ap(Maybe.of(3)))
[Functional Programming] Working with two functors(Applicative Functors)-- Part1 --.ap的更多相关文章
- [Functional Programming] Working with two functors(Applicative Functors)-- Part2 --liftAN
Let's examine a pointfree way to write these applicative calls. Since we know map is equal to of/ap, ...
- UCF Local Programming Contest 2016 J题(二分+bfs)
题目链接如下: https://nanti.jisuanke.com/t/43321 思路: 显然我们要采用二分的方法来寻找答案,给定一个高度如果能确定在这个高度时是否可以安全到达终点,那我们就可以很 ...
- Programming | 中/ 英文词频统计(MATLAB实现)
一.英文词频统计 英文词频统计很简单,只需借助split断句,再统计即可. 完整MATLAB代码: function wordcount %思路:中文词频统计涉及到对"词语"的判断 ...
- Coursera Algorithms Programming Assignment 4: 8 Puzzle (100分)
题目原文:http://coursera.cs.princeton.edu/algs4/assignments/8puzzle.html 题目要求:设计一个程序解决8 puzzle问题以及该问题的推广 ...
- Coursera Algorithms Programming Assignment 3: Pattern Recognition (100分)
题目原文详见http://coursera.cs.princeton.edu/algs4/assignments/collinear.html 程序的主要目的是寻找n个points中的line seg ...
- The 2019 Asia Nanchang First Round Online Programming Contest C. Hello 2019(动态dp)
题意:要找到一个字符串里面存在子序列9102 而不存在8102 输出最小修改次数 思路:对于单次询问 我们可以直接区间dpOn求出最小修改次数 但是对于多次询问 我在大部分题解看到的解释一般是用线段树 ...
- Functional Programming 资料收集
书籍: Functional Programming for Java Developers SICP(Structure and Interpretation of Computer Program ...
- Adaptive AUTOSAR 学习笔记 3 - AP 背景、技术及特征(中文翻译)
本系列学习笔记基于 AUTOSAR Adaptive Platform 官方文档 R20-11 版本.本文从AUTOSAR_EXP_PlatformDesign.pdf开始,一边学习,一边顺带着翻译一 ...
- windows下gVim(Vi/vim)基本使用
Vim 是一个Linux 平台上功能非常强大的编辑器,他是早年的Vi 编辑器的加强版.这个gVim 是windows 版的,并且有了标准的windows 风格的图形界面,所以叫g(graphical) ...
随机推荐
- 洛谷P1993 小K的农场 [差分约束系统]
题目传送门 小K的农场 题目描述 小K在MC里面建立很多很多的农场,总共n个,以至于他自己都忘记了每个农场中种植作物的具体数量了,他只记得一些含糊的信息(共m个),以下列三种形式描述: 农场a比农场b ...
- Redux学习之我对于其工作流程的理解和实践
目录 1 工作流程图 2 各部位职责 3 Demo 1 工作流程图 2 各部位职责 我在理解这个流程图的时候,采用的是一种容易记住的办法,并且贴切实际工作职责. 我们可以把整个Redux工 ...
- SpringMVC框架 注解 (转)
原文地址:http://www.cnblogs.com/yjq520/p/6734422.html 1.@Controller @Controller 用于标记在一个类上,使用它标记的类就是一个Spr ...
- java泛型理解。代码更明了。
泛型数据java基础,但真正理解需要悉心品尝.毕竟在工作中用到的是在是太多了. 不要以为new ArrayList<>这就是泛型,这只能属于会使用. 在工作中,相对于现有的项目源码的数据库 ...
- shell 文件合并,去重,分割
第一:两个文件的交集,并集前提条件:每个文件中不得有重复行1. 取出两个文件的并集(重复的行只保留一份)2. 取出两个文件的交集(只留下同时存在于两个文件中的文件)3. 删除交集,留下其他的行1. c ...
- [BZOJ4423][AMPPZ2013]Bytehattan(对偶图+并查集)
建出对偶图,删除一条边时将两边的格子连边.一条边两端连通当且仅当两边的格子不连通,直接并查集处理即可. #include<cstdio> #include<algorithm> ...
- [CF115E]Linear Kingdom Races
[CF115E]Linear Kingdom Races 题目大意: 有\(n(n\le10^5)\)个物品,编号为\(1\sim n\).选取第\(i\)个物品需要\(c_i\)的代价.另外有\(m ...
- ZOJ 3687 The Review Plan I 容斥原理
一道纯粹的容斥原理题!!不过有一个trick,就是会出现重复的,害我WA了几次!! 代码: #include<iostream> #include<cstdio> #inclu ...
- request.getScheme() 取到https正确的协议(转载)
最近在做一个项目, 架构上使用了 Nginx +tomcat 集群, 且nginx下配置了SSL,tomcat no SSL,项目使用https协议 但是,明明是https url请求,发现 log里 ...
- iOS 本地消息推送机制
转发自:https://www.jianshu.com/p/e347f999ed95 //已经废除的 http://blog.csdn.net/three_zhang/article/deta ...