原题链接

题目大意

\(n\times n\)的带权方阵,选一个权值最大的连通块

Solution

一眼连通性DP,然后就没了

转移很好想的啦,简单讨论一下就行了

有一个坑点,就是不能一个格子都不选,特判一下

注释还算详细QwQ

#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <string>
#include <vector>
#include <cmath>
#include <ctime>
#include <queue>
#include <map>
#include <set> using namespace std; #define ull unsigned long long
#define pii pair<int, int>
#define uint unsigned int
#define mii map<int, int>
#define lbd lower_bound
#define ubd upper_bound
#define INF 0x3f3f3f3f
#define IINF 0x3f3f3f3f3f3f3f3fLL
#define DEF 0x8f8f8f8f
#define DDEF 0x8f8f8f8f8f8f8f8fLL
#define vi vector<int>
#define ll long long
#define mp make_pair
#define pb push_back
#define re register
#define il inline #define N 10
#define MOD 114511 int n;
int val[N+5][N+5], ans = DEF, bin[N+5]; namespace HashTable { //哈希表所需
int lst, cur, head[MOD+5], nxt[MOD+5], tot[2];
int f[2][MOD+5], a[2][MOD+5];
void insert(int x, int v) { // 把x状态的最优值与v取max
int x0 = x%MOD, i;
for(i = head[x0]; i; i = nxt[i]) if(a[cur][i] == x) break;
if(!i) nxt[++tot[cur]] = head[x0], f[cur][tot[cur]] = DEF, a[cur][tot[cur]] = x, head[x0] = i = tot[cur];
f[cur][i] = max(f[cur][i], v);
}
} using namespace HashTable; // 最多有5(9/2向上取整)个联通块
// 采用8进制压缩 int decode(int s0, int v) { // 最小表示所需
static int tf[8];
int cnt = 0, s = 0;
memset(tf, 0, sizeof tf);
for(int i = 0; i < n; ++i) {
int x = (s0>>(3*i))%8;
if(!x) continue;
if(!tf[x]) tf[x] = ++cnt;
s += tf[x]*bin[i];
}
if(cnt == 1) ans = max(ans, v); // 顺便更新全局最优解
return s;
} int main() {
scanf("%d", &n);
bin[0] = 1;
for(int i = 1; i <= n; ++i) bin[i] = bin[i-1]<<3;
for(int i = 1; i <= n; ++i)
for(int j = 1; j <= n; ++j) scanf("%d", &val[i][j]), ans = max(ans, val[i][j]);
insert(0, 0); // 初始化
for(int i = 1; i <= n; ++i) {
for(int j = 1; j <= n; ++j) {
lst = cur, cur ^= 1, tot[cur] = 0;
memset(head, 0, sizeof head);
for(int k = 1; k <= tot[lst]; ++k) {
int s = a[lst][k], v = f[lst][k], p1, p2 = (s>>(3*(j-1)))%8;
if(j == 1) p1 = 0;
else p1 = (s>>(3*(j-2)))%8;
if(!p1 && !p2) { // 左和上都没有选
insert(decode(s, v), v); // 当前不选
insert(decode(s+7*bin[j-1], v+val[i][j]), v+val[i][j]); // 当前选
}
else if(p1 && !p2) { // 只有左选了
insert(decode(s, v), v); // 当前不选
insert(decode(s+p1*bin[j-1], v+val[i][j]), v+val[i][j]); // 当前选
}
else if(!p1 && p2) { // 只有上选了
int cnt = 0;
for(int p = 0; p < n; ++p) if((s>>(3*p))%8 == p2) cnt++; // 只要这个连通块还有另一处与轮廓线相交就可以不选当前的
if(cnt >= 2) insert(decode(s-p2*bin[j-1], v), v); // 当前不选
insert(decode(s, v+val[i][j]), v+val[i][j]); // 当前选
}
else { // 左和上都选了
int cnt = 0;
for(int p = 0; p < n; ++p) if((s>>(3*p))%8 == p2) cnt++; // 与上一种情况同理
if(cnt >= 2) insert(decode(s-p2*bin[j-1], v), v); // 当前不选
if(p1 != p2) for(int p = 0; p < n; ++p) if((s>>(3*p))%8 == p2) s += p1*bin[p]-p2*bin[p]; // 合并两个连通块
insert(decode(s, v+val[i][j]), v+val[i][j]); // 当前选
}
}
}
}
printf("%d\n", ans);
return 0;
}

[JLOI2009]神秘的生物——轮廓线DP的更多相关文章

  1. Luogu P3886 [JLOI2009]神秘的生物 最小表示法,轮廓线DP,插头DP,动态规划

    亲手写掉的第一道最小表示法!哈哈哈太开心啦~ 不同于以往的几个插头\(dp\),这个题目的轮廓线是周围的一圈\(n\)个格子.而其所谓"插头"也变成了相邻格子的所属连通分量编号,并 ...

  2. [JLOI2009]神秘的生物

    题目链接 题目大意 给定一个\(n*n\)的矩阵,从其中选取恰好一个连通块,使选取的格子所对应的权值和最大. \(n\leq 9\) 解题思路 由于\(n\)特别小,考虑插头dp. 和一般的插头dp不 ...

  3. 轮廓线DP POJ3254 && BZOJ 1087

    补了一发轮廓线DP,发现完全没有必要从右往左设置状态,自然一点: 5 6 7 8 9 1 2 3 4 如此设置轮廓线标号,转移的时候直接把当前j位改成0或者1就行了.注意多记录些信息对简化代码是很有帮 ...

  4. HDU4804 Campus Design 轮廓线dp

    跟上面那篇轮廓线dp是一样的,但是多了两个条件,一个是在原图上可能有些点是不能放的(即障碍),所以转移的时候要多一个判断color[i][j]是不是等于1什么的,另外一个是我们可以有多的1*1的骨牌, ...

  5. POJ2411 Mondriaan's Dream 轮廓线dp

    第一道轮廓线dp,因为不会轮廓线dp我们在南京区域赛的时候没有拿到银,可见知识点的欠缺是我薄弱的环节. 题目就是要你用1*2的多米诺骨排填充一个大小n*m(n,m<=11)的棋盘,问填满它有多少 ...

  6. UVA - 11270 轮廓线DP

    其实这题还能用状压DP解决,可是时间达到2000ms只能过掉POJ2411.状压DP解法详见状压DP解POJ2411 贴上POJ2411AC代码 : 2000ms 时间复杂度h*w*(2^w)*(2^ ...

  7. [UOJ422][集训队作业2018]小Z的礼物——轮廓线DP+min-max容斥

    题目链接: [集训队作业2018]小Z的礼物 题目要求的就是最后一个喜欢的物品的期望得到时间. 根据$min-max$容斥可以知道$E(max(S))=\sum\limits_{T\subseteq ...

  8. 【UOJ#422】【集训队作业2018】小Z的礼物(min-max容斥,轮廓线dp)

    [UOJ#422][集训队作业2018]小Z的礼物(min-max容斥,轮廓线dp) 题面 UOJ 题解 毒瘤xzy,怎么能搬这种题当做WC模拟题QwQ 一开始开错题了,根本就不会做. 后来发现是每次 ...

  9. BZOJ.4572.[SCOI2016]围棋(轮廓线DP)

    BZOJ 洛谷 \(Description\) 给定\(n,m,c\).\(Q\)次询问,每次询问给定\(2*c\)的模板串,求它在多少个\(n*m\)的棋盘中出现过.棋盘的每个格子有三种状态. \( ...

随机推荐

  1. Velocity 数值格式化(NumberTool工具类):保留两位小数和格式化千分位、取整

    Velocity 自带的工具类:NumberTool 实现数字格式化:保留两位小数和格式化千分位,以及取整. NumberTool 的 format(String format, Object obj ...

  2. linux中sleep详解实例

    在linux编程中,有时候会用到定时功能,常见的是用sleep(time)函数来睡眠time秒:但是这个函数是可以被中断的,也就是说当进程在睡眠的过程中,如果被中断,那么当中断结束回来再执行该进程的时 ...

  3. 在vue项目中获取当前城市

    在vue项目中使用百度地图获取当前城市:https://www.jianshu.com/p/0819cfd46712 Vue2 :百度地图bmap:https://www.jianshu.com/p/ ...

  4. idea查看源码没有注释的问题

    进入idea的设置 勾选这两个 然后重新导入 页面的右上角有个下载download source的提示,点击下载即可 然后页面就要源码注释了

  5. gx_dlms 的杂乱记录

    DLMS_ERROR_CODE_FALSE W3Jehpnc543MuwUz6ZWDshy5kwbbE9Cw CGXDLMSClient::GetData(CGXByteBuffer& rep ...

  6. IPD术语

    集成产品开发(Integrated Product Development,简称IPD)是一套产品开发的模式.理念与方法. ABC 基于活动的成本核算 ABM 基于活动的管理 ADCP  可获得性决策 ...

  7. 2019牛客多校第七场E Find the median 权值线段树+离散化

    Find the median 题目链接: https://ac.nowcoder.com/acm/contest/887/E 题目描述 Let median of some array be the ...

  8. XPath库详解

    目录 xpath入门 获取节点 获取所有节点 获取子节点 获取父节点 属性匹配 根据属性值匹配节点 属性多值匹配 多属性匹配 文本获取 按序选择 节点轴选择 补充 xpath的运算符介绍 xpath轴 ...

  9. Elastic Search快速上手(4):细节补充

    模糊搜索 可以进行模糊搜索: GET job/type1/_search { "query":{ "fuzzy":{ "title":{ & ...

  10. MySQL SELECT语法(二)SELECT...INTO语法

    源自MySQL 5.7 官方手册 SELECT...INTO Syntax 一.SELECT...INTO介绍 SELECT...INTO用来将查询结果存储在变量或者写入文件中. SELECT ... ...