洛谷P4983 忘情 (WQS二分+斜率优化)
忘情水二分模板题,最优解对划分段数的导数满足单调性(原函数凸性)即可使用此方法。
详细题解洛谷里面就有,不啰嗦了。
二分的临界点让人有点头大。。。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef double db;
const ll N=5e5+,inf=0x3f3f3f3f3f3f3f3f;
ll n,m,hd,tl,a[N],S[N],dp[N],cnt[N];
struct P {ll x,y,c;} q[N];
P operator-(P a,P b) {return {a.x-b.x,a.y-b.y,a.c};}
ll cross(P a,P b) {return a.x*b.y-a.y*b.x;}
ll solve(ll m) {
hd=tl=;
q[tl++]= {,,};
for(ll i=; i<=n; ++i) {
for(; hd+<tl&&cross((P) {,*(S[i]+)},q[hd+]-q[hd])<=; ++hd);
dp[i]=q[hd].y-*(S[i]+)*q[hd].x+(S[i]+)*(S[i]+)+m;
cnt[i]=q[hd].c+;
P np= {S[i],dp[i]+S[i]*S[i],cnt[i]};
for(; hd+<tl&&cross(q[tl-]-q[tl-],np-q[tl-])<=; --tl);
q[tl++]=np;
}
return cnt[n];
}
ll bi(ll l,ll r) {
ll ret;
while(l<=r) {
ll mid=(l+r)>>;
if(solve(mid)>=m)ret=dp[n]-m*mid,l=mid+;
else r=mid-;
}
return ret;
}
int main() {
scanf("%lld%lld",&n,&m);
for(ll i=; i<=n; ++i)scanf("%lld",&a[i]);
for(ll i=; i<=n; ++i)S[i]=S[i-]+a[i];
printf("%lld\n",bi(,inf));
return ;
}
洛谷P4983 忘情 (WQS二分+斜率优化)的更多相关文章
- 【洛谷p3994】Highway 二分+斜率优化DP
题目大意:给你一颗$n$个点的有根树,相邻两个点之间有距离,我们可以从$x$乘车到$x$的祖先,费用为$dis\times P[x]+Q[x]$,问你除根以外每个点到根的最小花费. 数据范围:$n≤1 ...
- 洛谷P4027 [NOI2007]货币兑换(dp 斜率优化 cdq 二分)
题意 题目链接 Sol 解题的关键是看到题目里的提示... 设\(f[i]\)表示到第\(i\)天所持有软妹币的最大数量,显然答案为\(max_{i = 1}^n f[i]\) 转移为\(f_i = ...
- P4983-忘情【wqs二分,斜率优化】
正题 题目链接:https://www.luogu.com.cn/problem/P4983 题目大意 给出长度为\(n\)的序列\(x\),记平均数为\(\bar{x}\),要求将序列分成\(m\) ...
- 洛谷P2365 任务安排(斜率优化dp)
传送门 思路: 最朴素的dp式子很好考虑:设\(dp(i,j)\)表示前\(i\)个任务,共\(j\)批的最小代价. 那么转移方程就有: \[ dp(i,j)=min\{dp(k,j-1)+(sumT ...
- 洛谷P2120 [ZJOI2007]仓库建设 斜率优化DP
做的第一道斜率优化\(DP\)QwQ 原题链接1/原题链接2 首先考虑\(O(n^2)\)的做法:设\(f[i]\)表示在\(i\)处建仓库的最小费用,则有转移方程: \(f[i]=min\{f[j] ...
- 洛谷P4072 [SDOI2016]征途(斜率优化)
传送门 推式子(快哭了……)$$s^2*m^2=\sum _{i=1}^m (x_i-\bar{x})^2$$ $$s^2*m^2=m*\sum _{i=1}^m x_i^2-2*sum_n\sum ...
- 【洛谷 P5017】 摆渡车(斜率优化)
题目链接 算是巩固了一下斜率优化吧. 设\(f[i]\)表示前\(i\)分钟最少等待时间. 则有\(f[i]=\min_{j=0}^{i-m}f[j]+(cnt[i]-cnt[j])*i-(sum[i ...
- SCUT - 365 - 鹏哥的数字集合 - wqs二分 - 斜率优化dp
https://scut.online/p/365 https://www.luogu.org/problemnew/solution/P2365 写这篇的时候还不是很明白,看一下这个东西. http ...
- 洛谷3571 POI2014 SUP-Supercomputer (斜率优化)
一道神仙好题. 首先看到有多组\(k\),第一反应就是离线. 考虑贪心. 我们每次一定是尽量选择有儿子的节点.以便于我们下一次扩展. 但是对于一个\(k\),每次贪心的复杂度是\(O(n)\) 总复杂 ...
随机推荐
- OpenCV.学习OpenCV.pdf
1.Pdf.P160(书.P129) “表5-1:平滑操作的各总类型” 的列名 看起来很模糊,现在先把尽可能看得清的字记录下来: 平滑类型 名称 支持 No 输入数据类型 输出数据类型 简要说明 2. ...
- linux基础命令笔记
配置IP地址 vi /etc/sysconfig/network-scripts/ifcfg-eth0 忘记root密码grub e 选择kernel按e 输入single b 1:目录及文件的基本操 ...
- 主成分分析(PCA)与线性判别分析(LDA)
主成分分析 线性.非监督.全局的降维算法 PCA最大方差理论 出发点:在信号处理领域,信号具有较大方差,噪声具有较小方差 目标:最大化投影方差,让数据在主投影方向上方差最大 PCA的求解方法: 对样本 ...
- Java包的基本概述
第七章 7.1 包的基本概述 起因: 在我们设计一个程序的时候(尤其是多人合作),会写一些类来实现功能,但是往往会有重名的现象发生,为了解决这个问题,则专门设计了包.(还有其他作用,下述) 简单理解: ...
- [转帖]Kafka 原理和实战
Kafka 原理和实战 https://segmentfault.com/a/1190000020120043 两个小时读完... 实在是看不完... 1.2k 次阅读 · 读完需要 101 分钟 ...
- Python+request超时和重试
Python+request超时和重试 一.什么是超时? 1.连接超时 连接超时指的是没连接上,超过指定的时间内都没有连接上,这就是连接超时.(连接时间就是httpclient发送请求的地方开始到连接 ...
- Oracle的查询-多行查询
多行函数[聚合函数],作用于多行,返回一个值 ) from emp;--查询总数量 select count(empno) from emp;--查询总数量 select count(*) from ...
- LeetCode 第 15 场双周赛
1287.有序数组中出现次数超过25%的元素 1288.删除被覆盖区间 1286.字母组合迭代器 1289.下降路径最小和 II 下降和不能只保留原数组中最小的两个,hacked. 1287.有序数组 ...
- springboot中配置文件使用2
本文章接上一篇文章:https://www.cnblogs.com/ysq0908/p/11140931.html 1.使用注解@Value获取配置文件的值 注意:上述中的复杂数据封装指:有map等数 ...
- PostgreSQL-存储过程
存储过程其实就是函数,由一组 sql 语句组成,实现比较复杂的数据库操作: 存储过程 是 存储在 数据库服务器 上的,用户可以像调用 sql 自带函数一样 调用存储过程 语法解析 CREATE [OR ...