洛谷P4983 忘情 (WQS二分+斜率优化)
忘情水二分模板题,最优解对划分段数的导数满足单调性(原函数凸性)即可使用此方法。
详细题解洛谷里面就有,不啰嗦了。
二分的临界点让人有点头大。。。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef double db;
const ll N=5e5+,inf=0x3f3f3f3f3f3f3f3f;
ll n,m,hd,tl,a[N],S[N],dp[N],cnt[N];
struct P {ll x,y,c;} q[N];
P operator-(P a,P b) {return {a.x-b.x,a.y-b.y,a.c};}
ll cross(P a,P b) {return a.x*b.y-a.y*b.x;}
ll solve(ll m) {
hd=tl=;
q[tl++]= {,,};
for(ll i=; i<=n; ++i) {
for(; hd+<tl&&cross((P) {,*(S[i]+)},q[hd+]-q[hd])<=; ++hd);
dp[i]=q[hd].y-*(S[i]+)*q[hd].x+(S[i]+)*(S[i]+)+m;
cnt[i]=q[hd].c+;
P np= {S[i],dp[i]+S[i]*S[i],cnt[i]};
for(; hd+<tl&&cross(q[tl-]-q[tl-],np-q[tl-])<=; --tl);
q[tl++]=np;
}
return cnt[n];
}
ll bi(ll l,ll r) {
ll ret;
while(l<=r) {
ll mid=(l+r)>>;
if(solve(mid)>=m)ret=dp[n]-m*mid,l=mid+;
else r=mid-;
}
return ret;
}
int main() {
scanf("%lld%lld",&n,&m);
for(ll i=; i<=n; ++i)scanf("%lld",&a[i]);
for(ll i=; i<=n; ++i)S[i]=S[i-]+a[i];
printf("%lld\n",bi(,inf));
return ;
}
洛谷P4983 忘情 (WQS二分+斜率优化)的更多相关文章
- 【洛谷p3994】Highway 二分+斜率优化DP
题目大意:给你一颗$n$个点的有根树,相邻两个点之间有距离,我们可以从$x$乘车到$x$的祖先,费用为$dis\times P[x]+Q[x]$,问你除根以外每个点到根的最小花费. 数据范围:$n≤1 ...
- 洛谷P4027 [NOI2007]货币兑换(dp 斜率优化 cdq 二分)
题意 题目链接 Sol 解题的关键是看到题目里的提示... 设\(f[i]\)表示到第\(i\)天所持有软妹币的最大数量,显然答案为\(max_{i = 1}^n f[i]\) 转移为\(f_i = ...
- P4983-忘情【wqs二分,斜率优化】
正题 题目链接:https://www.luogu.com.cn/problem/P4983 题目大意 给出长度为\(n\)的序列\(x\),记平均数为\(\bar{x}\),要求将序列分成\(m\) ...
- 洛谷P2365 任务安排(斜率优化dp)
传送门 思路: 最朴素的dp式子很好考虑:设\(dp(i,j)\)表示前\(i\)个任务,共\(j\)批的最小代价. 那么转移方程就有: \[ dp(i,j)=min\{dp(k,j-1)+(sumT ...
- 洛谷P2120 [ZJOI2007]仓库建设 斜率优化DP
做的第一道斜率优化\(DP\)QwQ 原题链接1/原题链接2 首先考虑\(O(n^2)\)的做法:设\(f[i]\)表示在\(i\)处建仓库的最小费用,则有转移方程: \(f[i]=min\{f[j] ...
- 洛谷P4072 [SDOI2016]征途(斜率优化)
传送门 推式子(快哭了……)$$s^2*m^2=\sum _{i=1}^m (x_i-\bar{x})^2$$ $$s^2*m^2=m*\sum _{i=1}^m x_i^2-2*sum_n\sum ...
- 【洛谷 P5017】 摆渡车(斜率优化)
题目链接 算是巩固了一下斜率优化吧. 设\(f[i]\)表示前\(i\)分钟最少等待时间. 则有\(f[i]=\min_{j=0}^{i-m}f[j]+(cnt[i]-cnt[j])*i-(sum[i ...
- SCUT - 365 - 鹏哥的数字集合 - wqs二分 - 斜率优化dp
https://scut.online/p/365 https://www.luogu.org/problemnew/solution/P2365 写这篇的时候还不是很明白,看一下这个东西. http ...
- 洛谷3571 POI2014 SUP-Supercomputer (斜率优化)
一道神仙好题. 首先看到有多组\(k\),第一反应就是离线. 考虑贪心. 我们每次一定是尽量选择有儿子的节点.以便于我们下一次扩展. 但是对于一个\(k\),每次贪心的复杂度是\(O(n)\) 总复杂 ...
随机推荐
- 初识gRPC
一.gRPC的概念 gRPC是Google推出的一个开源高性能的轻量级RPC框架,可以在任何环境中运行.它可以有效地连接数据中心内和跨数据中心的服务,并提供可插拔的支持,以实现负载平衡,跟踪,健康检查 ...
- linux文本处理三剑客(一)---grep
在linux种有一句话,叫做一切皆文件.文件有个特点,它是个文本.它可以读.可以写,如果是二进制文件,它还能执行.这样的话,我们在使用linux的时候,多数时间都是要和各式各样文件打交道的.那么,熟悉 ...
- 《你必须知道的495个C语言问题》读书笔记之第8-10章:字符串、布尔类型和预处理器
一.字符和字符串 1. Q:为什么strcat(string, '!')不行? A:strcat()用于拼接字符串,所以应该写成strcat(string, "!")." ...
- yum源 epel源 替换及安装
#!/bin/sh # 备份yum源 zip -r /etc/yum.repos.d/yum_resource_back_up.zip /etc/yum.repos.d/* # 替换yum源 wget ...
- DB2创建EMP和DEPT并进行基础操作
一.DB2创建EMP和DEPT测试表 --DB2创建测试表 CREATE TABLE TEST.EMP (EMPNO INTEGER NOT NULL, ENAME ), JOB ), MGR INT ...
- Kubernetes---资源控制器之ReplicationController、ReplicaSet和Deployment
1.ReplicationController和ReplicaSet介绍 RC(ReplicationController)主要的作用就是用来确保容器应用的副本数始终保持在用户定义的副本数.即如果有容 ...
- C# U盘扫描
无意中看到的一个例程,保留一份. 以供后用. using System; using System.Collections.Generic; using System.ComponentM ...
- python — 函数基础知识(一)
目录 1 面向过程编程与函数式编程 2 函数的基本结构 3 函数的参数 1 面向过程编程与函数式编程 截至目前我们所接触.所写的编程为:面向过程式编程[可读性差/可重用性差] # 面向过程编程 use ...
- 通过ImageReader进行图像裁剪时出现NoSuchElementException异常
首先放上最初的Image工具类 package util; import java.awt.Rectangle; import java.awt.image.BufferedImage; import ...
- Memcache与Redis有什么区别?
Redis 和 Memcache 都是基于内存的数据存储系统.Memcached是高性能分布式内存缓存服务,其本质上就是一个内存key-value数据库.Redis是一个开源的key-value存储系 ...