kNN(K-Nearest Neighbor)最邻近规则分类(转)
KNN最邻近规则,主要应用领域是对未知事物的识别,即判断未知事物属于哪一类,判断思想是,基于欧几里得定理,判断未知事物的特征和哪一类已知事物的的特征最接近;
K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。KNN算法中,所选择的邻居都是已经正确分类的对象。该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。 KNN方法虽然从原理上也依赖于极限定理,但在类别决策时,只与极少量的相邻样本有关。由于KNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,KNN方法较其他方法更为适合。
KNN算法不仅可以用于分类,还可以用于回归。通过找出一个样本的k个最近邻居,将这些邻居的属性的平均值赋给该样本,就可以得到该样本的属性。更有用的方法是将不同距离的邻居对该样本产生的影响给予不同的权值(weight),如权值与距离成正比(组合函数)。
该算法在分类时有个主要的不足是,当样本不平衡时,如一个类的样本容量很大,而其他类样本容量很小时,有可能导致当输入一个新样本时,该样本的K个邻居中大容量类的样本占多数。 该算法只计算“最近的”邻居样本,某一类的样本数量很大,那么或者这类样本并不接近目标样本,或者这类样本很靠近目标样本。无论怎样,数量并不能影响运行结果。可以采用权值的方法(和该样本距离小的邻居权值大)来改进。该方法的另一个不足之处是计算量较大,因为对每一个待分类的文本都要计算它到全体已知样本的距离,才能求得它的K个最近邻点。目前常用的解决方法是事先对已知样本点进行剪辑,事先去除对分类作用不大的样本。该算法比较适用于样本容量比较大的类域的自动分类,而那些样本容量较小的类域采用这种算法比较容易产生误分。
K-NN可以说是一种最直接的用来分类未知数据的方法。基本通过下面这张图跟文字说明就可以明白K-NN是干什么的
简单来说,K-NN可以看成:有那么一堆你已经知道分类的数据,然后当一个新数据进入的时候,就开始跟训练数据里的每个点求距离,然后挑离这个训练数据最近的K个点看看这几个点属于什么类型,然后用少数服从多数的原则,给新数据归类。
算法步骤:
step.1---初始化距离为最大值
step.2---计算未知样本和每个训练样本的距离dist
step.3---得到目前K个最临近样本中的最大距离maxdist
step.4---如果dist小于maxdist,则将该训练样本作为K-最近邻样本
step.5---重复步骤2、3、4,直到未知样本和所有训练样本的距离都算完
step.6---统计K-最近邻样本中每个类标号出现的次数
step.7---选择出现频率最大的类标号作为未知样本的类标号
kNN(K-Nearest Neighbor)最邻近规则分类(转)的更多相关文章
- kNN(K-Nearest Neighbor)最邻近规则分类
KNN最邻近规则,主要应用领域是对未知事物的识别,即推断未知事物属于哪一类,推断思想是,基于欧几里得定理,推断未知事物的特征和哪一类已知事物的的特征最接近: K近期邻(k-Nearest Neighb ...
- K NEAREST NEIGHBOR 算法(knn)
K Nearest Neighbor算法又叫KNN算法,这个算法是机器学习里面一个比较经典的算法, 总体来说KNN算法是相对比较容易理解的算法.其中的K表示最接近自己的K个数据样本.KNN算法和K-M ...
- K Nearest Neighbor 算法
文章出处:http://coolshell.cn/articles/8052.html K Nearest Neighbor算法又叫KNN算法,这个算法是机器学习里面一个比较经典的算法, 总体来说KN ...
- 最邻近规则分类(K-Nearest Neighbor)KNN算法
自写代码: # Author Chenglong Qian from numpy import * #科学计算模块 import operator #运算符模块 def createDaraSet( ...
- 4.2 最邻近规则分类(K-Nearest Neighbor)KNN算法应用
1 数据集介绍: 虹膜 150个实例 萼片长度,萼片宽度,花瓣长度,花瓣宽度 (sepal length, sepal width, petal length and petal wi ...
- 最邻近规则分类KNN算法
例子: 求未知电影属于什么类型: 算法介绍: 步骤: 为了判断未知实例的类别,以所有已知类别的实例作为参照 选择参数K 计算未知实例与所有已知实例的距离 选择最近K个已 ...
- 机器学习--最邻近规则分类KNN算法
理论学习: 3. 算法详述 3.1 步骤: 为了判断未知实例的类别,以所有已知类别的实例作为参照 选择参数K 计算未知实例与所有已知实例的距离 选 ...
- K nearest neighbor cs229
vectorized code 带来的好处. import numpy as np from sklearn.datasets import fetch_mldata import time impo ...
- K-Means和K Nearest Neighbor
来自酷壳: http://coolshell.cn/articles/7779.html http://coolshell.cn/articles/8052.html
随机推荐
- Node.js导入jquery.min.js报错
报错如下: 一看就是路径问题,可是代码中路径看起来貌似没错,如下: 解决方法: 引入方式如下: <script type="text/javascript" src=&quo ...
- Java使用Apache Commons Net的FtpClient进行下载时会宕掉的一种优化方法
在使用FtpClient进行下载测试的时候,会发现一个问题,就是我如果一直重复下载一批文件,那么经常会宕掉. 也就是说程序一直停在那里一动不动了. 每个人的情况都不一样,我的情况是因为我在本地之前就有 ...
- 一个区分度很大的iOS面试题
@property 后面可以有哪些修饰符?@property中有哪些属性关键字? 属性可以拥有的特质分为四类: 原子性--- nonatomic 特质 在默认情况下,由编译器合成的方法会通过锁定机制确 ...
- 【MM系列】SAP S/4 HANA的物料编码40位设置
公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[MM系列]SAP S/4 HANA的物料编码4 ...
- Java实现回形数,只利用数组、循环和if-else语句
import java.util.Scanner; public class learn { public static void main(String[] args){ System.out.pr ...
- Jenkins+MSbuild+SVN实现快速搭建.net持续集成环境(构建、编辑、部署到服务器)
Jenkins是一个可扩展的持续集成引擎,Jenkins非常易于安装和配置,简单易用,下面开始搭建.net持续集成环境 Jenkins和SVN安装这里就不介绍了 一.准备工作 1.Jenkins中系统 ...
- Shiro加盐加密
接本人的上篇文章<Shiro认证.角色.权限>,这篇文章我们来学习shiro的加盐加密实现 自定义Realm: package com.czhappy.realm; import org. ...
- idea多级目录与单级目录切换
- 说一说Unsafe魔法类
这篇算是对 Unsafe 的一个总体概况,由于内容实在太多,后续会分开几篇文章对里面内容展开细讲 前言 Unsafe可以说是java的后门,类似西游记中的如来佛祖法力无边,Unsafe主要提供一些用于 ...
- es查询优化思路
尽可能的利用内存 将尽可能的索引留在内存,即留更多的堆外内存给es 不查询的字段尽量不要往es插入,节省索引的空间大小(es + hbase) 数据预热 冷热数据分离 文档字段设计 根据查询场景设计字 ...