朴素贝叶斯算法python实现
朴素贝叶斯是一种十分简单的分类算法,称其朴素是因为其思想基础的简单性,就文本分类而言,他认为词袋中的两两词之间的关系是相互独立的,即一个对象的特征向量中的每个维度都是互相独立的。这是朴素贝叶斯理论的思想基础。
朴素贝叶斯分类的正式定义:
- 设x={}为一个待分类项,而每个a为x的一个特征属性
- 有类别集合C={}
- 计算P(|x),P(|x),…,P(|x)
- 如果P(|x)=max{ P(|x),P(|x),…,P(|x)},则x
那么关键就是如何计算第三步中的各个条件概率,我们可以这样计算:
- 找到一个已知分类的待分类项集合,即训练集
- 统计得到在各类别下各个特征属性的条件概率估计,即:
P(),P(),…,P()
P(),P(),…,P()
P(),P(),…,P()
- 如果各个特征属性是条件独立的(或者假设他们之间是相互独立的),根据贝叶斯定理,有如下推导:
因为分母对于所有类别为常数,只要将分子最大化即可,又因为各特征属性是条件独立的,所以有:
根据上述分析,朴素贝叶斯分类的流程可以表示如下:
- 训练数据生成样本集:TF-IDF
- 对每个类别计算P()
- 对每个特征属性计算所有划分的条件概率
- 对每个类别计算P(x|)P()
- 以P(x|)P()的最大项作为x的所属类别
朴素贝叶斯的算法实现
首先创建一个Nbayes_pre.py文件来编写导入的数据和朴素贝叶斯类的代码
#高斯朴素贝耶斯
import numpy as np
from sklearn.model_selection import train_test_split
import pandas as pd
from sklearn.naive_bayes import GaussianNB
from sklearn.naive_bayes import BernoulliNB #伯努利分布
from sklearn.naive_bayes import MultinomialNB
from sklearn.neighbors import KNeighborsClassifier
'''''
clf = GaussianNB().fit(X, Y)
clf_pf = GaussianNB().partial_fit(X, Y, np.unique(Y))
##伯努利分布
clf = BernoulliNB()
clf.fit(train_data, train_target)
BernoulliNB(alpha=1.0, binarize=0.0, class_prior=None, fit_prior=True)
#多项式分布
from sklearn.naive_bayes import MultinomialNB
clf = MultinomialNB().fit(x_train, y_train)
'''
def getdatafromcsv():
data=pd.read_csv('iris .csv')
cols=['Sepal.Length','Sepal.Width','Petal.Length','Petal.Width']
train_target=data['Species']
train_data=data[cols]
return train_data,train_target
"""
#第一个为身高,第二个值为体重(kg),第三个为性别,1为男,2为女
x_train = [[160, 60, 1], [155, 80, 1], [178, 53, 2], [158, 53, 2], [166, 45, 2], [170, 50, 2], [156, 56, 2],
[166, 50, 1], [175, 55, 1], [188, 68, 1], [159, 41, 2], [166, 70, 1], [175, 85, 1], [188, 98, 1],
[159, 61, 2]]
#1为胖,0为瘦
y_train = [1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1]
x_test = [[166, 45, 2], [172, 52, 1], [156, 60, 1], [150, 70, 2],[166,60,1]]
"""
train_data,train_target=getdatafromcsv()
x_train,x_test,y_train,y_test=train_test_split(train_data,train_target,test_size=0.1)
def predcitbyts(train_data,train_target,test_data):
clf = GaussianNB().fit(train_data,train_target)
predict=clf.predict(test_data)
print("高斯贝耶斯结果:",predict)
clf_pf = GaussianNB().partial_fit(train_data, train_target, np.unique(train_target))
predict1=clf_pf.predict(test_data)
print("高斯贝耶斯结果partial_fit:",predict1)
def predictknn(train_data,train_target,test_data):
knn = KNeighborsClassifier()
knn.fit(train_data, train_target)
iris_y_predict = knn.predict(test_data)
print("KNN结果:",iris_y_predict)
def Bernoulli(train_data,train_target,test_data):
clf = BernoulliNB()
clf.fit(train_data, train_target)
BernoulliNB(alpha=1.0, binarize=0.0, class_prior=None, fit_prior=True)
predict=clf.predict(test_data)
print(predict)
#多项式
def Multinomial(train_data,train_target,test_data):
clf = MultinomialNB().fit(x_train, y_train)
predict=clf.predict(test_data)
print(predict)
Multinomial(x_train,y_train,x_test)
print(y_test)
朴素贝叶斯算法python实现的更多相关文章
- 朴素贝叶斯算法--python实现
朴素贝叶斯算法要理解一下基础: [朴素:特征条件独立 贝叶斯:基于贝叶斯定理] 1朴素贝叶斯的概念[联合概率分布.先验概率.条件概率**.全概率公式][条件独立性假设.] 极大似然估计 ...
- 朴素贝叶斯算法原理及Spark MLlib实例(Scala/Java/Python)
朴素贝叶斯 算法介绍: 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法. 朴素贝叶斯的思想基础是这样的:对于给出的待分类项,求解在此项出现的条件下各个类别出现的概率,在没有其它可用信息下,我 ...
- 朴素贝叶斯算法的python实现方法
朴素贝叶斯算法的python实现方法 本文实例讲述了朴素贝叶斯算法的python实现方法.分享给大家供大家参考.具体实现方法如下: 朴素贝叶斯算法优缺点 优点:在数据较少的情况下依然有效,可以处理多类 ...
- 朴素贝叶斯算法的python实现
朴素贝叶斯 算法优缺点 优点:在数据较少的情况下依然有效,可以处理多类别问题 缺点:对输入数据的准备方式敏感 适用数据类型:标称型数据 算法思想: 朴素贝叶斯比如我们想判断一个邮件是不是垃圾邮件,那么 ...
- 机器学习:python中如何使用朴素贝叶斯算法
这里再重复一下标题为什么是"使用"而不是"实现": 首先,专业人士提供的算法比我们自己写的算法无论是效率还是正确率上都要高. 其次,对于数学不好的人来说,为了实 ...
- Python机器学习笔记:朴素贝叶斯算法
朴素贝叶斯是经典的机器学习算法之一,也是为数不多的基于概率论的分类算法.对于大多数的分类算法,在所有的机器学习分类算法中,朴素贝叶斯和其他绝大多数的分类算法都不同.比如决策树,KNN,逻辑回归,支持向 ...
- Python机器学习算法 — 朴素贝叶斯算法(Naive Bayes)
朴素贝叶斯算法 -- 简介 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法.最为广泛的两种分类模型是决策树模型(Decision Tree Model)和朴素贝叶斯模型(Naive Baye ...
- 机器学习---用python实现朴素贝叶斯算法(Machine Learning Naive Bayes Algorithm Application)
在<机器学习---朴素贝叶斯分类器(Machine Learning Naive Bayes Classifier)>一文中,我们介绍了朴素贝叶斯分类器的原理.现在,让我们来实践一下. 在 ...
- 朴素贝叶斯算法下的情感分析——C#编程实现
这篇文章做了什么 朴素贝叶斯算法是机器学习中非常重要的分类算法,用途十分广泛,如垃圾邮件处理等.而情感分析(Sentiment Analysis)是自然语言处理(Natural Language Pr ...
随机推荐
- 中国大学MOOC课程信息之数据分析可视化一
版权声明:本文为博主原创文章,转载 请注明出处:https://blog.csdn.net/sc2079/article/details/82263391 9月2日更:中国大学MOOC课程信息之数据分 ...
- KubeEdge v0.2发布,全球首个K8S原生的边缘计算平台开放云端代码
KubeEdge开源背景 KubeEdge在18年11月24日的上海KubeCon上宣布开源,技术圈曾掀起一阵讨论边缘计算的风潮,从此翻开了边缘计算和云计算联动的新篇章. KubeEdge即Kube+ ...
- 1.caffe初入
1.FrameWork of Caffe Caffe是一种编程框架,内部提供了一套编程机制,或者说一个模板框架,用以实现GPU并行架构下的机器学习,DeepLearing等算法,能在性能上大幅度提升, ...
- Python 类和对象(2)
上文讲到 类 = 属性 + 方法 今天来讲一下方法里常见的一个特殊的方法: 名字叫 __init__ 的构造方法 1.特殊的方法 :__init__ 该方法在我们实例化类的时候,python就自动调用 ...
- 从c到c++<四>
总结一下:内联函数实际上就是用inline修饰的函数,这些函数会在编译时由编译器来将代码展开,而不用像上面第二点提到的人工展开,它的使用场景:代码很短.使用频率高. 具体代码如下: 对于这两者实际上还 ...
- flink相关
flink一.简单实时计算方案 假如现在我们有一个电商平台,每天访问的流量巨大,主要访问流量都集中在衣服类.家电类页面,那么我们想实时看到这两类页面的访问量走势(十分钟出一个统计量),当做平台的重要指 ...
- .net core 版本支持
NetCore sdk并不是每个版本都支持VS2017工具,也不是每个版本的sdk版本号和Runtime版本号都一样,这就需要我们在创建某个版本的net core应用时注意:使用不同版本的vs时需要对 ...
- java获取web项目下文件夹的路径方法
方法一: String realPath=request.getSession().getServletContext() .getRealPath("upload"); 方法二: ...
- learning express step(九)
router-level middleware works in the same way as application-level middleware, except it is bound to ...
- [Luogu] 区间统计Tallest Cow
https://www.luogu.org/problemnew/show/P2879 差分 | 线段树 #include <iostream> #include <cstdio&g ...