LOJ6436. 「PKUSC2018」神仙的游戏 [NTT]
思路
首先通过各种手玩/找规律/严谨证明,发现当\(n-i\)为border当且仅当对于任意\(k\in[0,i)\),模\(i\)余\(k\)的位置没有同时出现0和1。
换句话说,拿出任意一个1的位置\(x\),一个0的位置\(y\),那么对于\(|x-y|\)的所有约数\(i\),\(n-i\)均不合法。
考虑用NTT优化这个过程:记两个多项式\(A(x),B(x)\)。若\(s_i=0\)则\([x^i]A(x)=1\);若\(s_i=1\)则\([x^{n-i}]B(x)=1\)。然后把\(A\)和\(B\)卷积起来即可。
代码
#include<bits/stdc++.h>
clock_t t=clock();
namespace my_std{
using namespace std;
#define pii pair<int,int>
#define fir first
#define sec second
#define MP make_pair
#define rep(i,x,y) for (int i=(x);i<=(y);i++)
#define drep(i,x,y) for (int i=(x);i>=(y);i--)
#define go(x) for (int i=head[x];i;i=edge[i].nxt)
#define templ template<typename T>
#define sz 4004040
#define mod 998244353ll
typedef long long ll;
typedef double db;
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
templ inline T rnd(T l,T r) {return uniform_int_distribution<T>(l,r)(rng);}
templ inline bool chkmax(T &x,T y){return x<y?x=y,1:0;}
templ inline bool chkmin(T &x,T y){return x>y?x=y,1:0;}
templ inline void read(T& t)
{
t=0;char f=0,ch=getchar();double d=0.1;
while(ch>'9'||ch<'0') f|=(ch=='-'),ch=getchar();
while(ch<='9'&&ch>='0') t=t*10+ch-48,ch=getchar();
if(ch=='.'){ch=getchar();while(ch<='9'&&ch>='0') t+=d*(ch^48),d*=0.1,ch=getchar();}
t=(f?-t:t);
}
template<typename T,typename... Args>inline void read(T& t,Args&... args){read(t); read(args...);}
char __sr[1<<21],__z[20];int __C=-1,__zz=0;
inline void Ot(){fwrite(__sr,1,__C+1,stdout),__C=-1;}
inline void print(register int x)
{
if(__C>1<<20)Ot();if(x<0)__sr[++__C]='-',x=-x;
while(__z[++__zz]=x%10+48,x/=10);
while(__sr[++__C]=__z[__zz],--__zz);__sr[++__C]='\n';
}
void file()
{
#ifdef NTFOrz
freopen("a.in","r",stdin);
#endif
}
inline void chktime()
{
#ifndef ONLINE_JUDGE
cout<<(clock()-t)/1000.0<<'\n';
#endif
}
#ifdef mod
ll ksm(ll x,int y){ll ret=1;for (;y;y>>=1,x=x*x%mod) if (y&1) ret=ret*x%mod;return ret;}
ll inv(ll x){return ksm(x,mod-2);}
#else
ll ksm(ll x,int y){ll ret=1;for (;y;y>>=1,x=x*x) if (y&1) ret=ret*x;return ret;}
#endif
// inline ll mul(ll a,ll b){ll d=(ll)(a*(double)b/mod+0.5);ll ret=a*b-d*mod;if (ret<0) ret+=mod;return ret;}
}
using namespace my_std;
int r[sz],limit;
void NTT_init(int n)
{
limit=1;int l=-1;
while (limit<=n+n) limit<<=1,++l;
rep(i,0,limit-1) r[i]=(r[i>>1]>>1)|((i&1)<<l);
}
void NTT(ll *a,int type)
{
rep(i,0,limit-1) if (i<r[i]) swap(a[i],a[r[i]]);
for (int mid=1;mid<limit;mid<<=1)
{
ll Wn=ksm(3,(mod-1)/mid>>1);if (type==-1) Wn=inv(Wn);
for (int len=mid<<1,j=0;j<limit;j+=len)
{
ll w=1;
for (int k=0;k<mid;k++,w=w*Wn%mod)
{
ll x=a[j+k],y=a[j+k+mid]*w%mod;
a[j+k]=(x+y)%mod;a[j+k+mid]=(x-y+mod)%mod;
}
}
}
if (type==1) return;
ll I=inv(limit);
rep(i,0,limit-1) a[i]=a[i]*I%mod;
}
int n;
char s[sz];
ll tmp1[sz],tmp2[sz],a[sz];
ll ans;
int main()
{
file();
cin>>(s+1);n=strlen(s+1);
rep(i,1,n) if (s[i]=='0') tmp1[i]=1;
rep(i,1,n) if (s[i]=='1') tmp2[n-i]=1;
NTT_init(n);
NTT(tmp1,1);NTT(tmp2,1);
rep(i,0,limit-1) tmp1[i]=tmp1[i]*tmp2[i]%mod;
NTT(tmp1,-1);
rep(i,1,n+n) a[i]=tmp1[i];
rep(i,1,n-1)
{
bool flg=1;
for (int j=i;j<n;j+=i) flg&=(a[n-j]==0&&a[n+j]==0);
if (flg) ans^=1ll*(n-i)*(n-i);
}
ans^=1ll*n*n;
cout<<ans;
return 0;
}
LOJ6436. 「PKUSC2018」神仙的游戏 [NTT]的更多相关文章
- LOJ #6436. 「PKUSC2018」神仙的游戏(字符串+NTT)
题面 LOJ #6436. 「PKUSC2018」神仙的游戏 题解 参考 yyb 的口中的长郡最强选手 租酥雨大佬的博客 ... 一开始以为 通配符匹配 就是类似于 BZOJ 4259: 残缺的字符串 ...
- loj#6436. 「PKUSC2018」神仙的游戏(NTT)
题面 传送门 题解 一旦字符串踏上了通配符的不归路,它就永远脱离了温暖的字符串大家庭的怀抱 用人话说就是和通配符扯上关系的字符串就不是个正常的字符串了比如说这个 让我们仔细想想,如果一个长度为\(le ...
- loj#6436. 「PKUSC2018」神仙的游戏(生成函数)
题意 链接 Sol 生成函数题都好神仙啊qwq 我们考虑枚举一个长度\(len\).有一个结论是如果我们按\(N - len\)的余数分类,若同一组内的全为\(0\)或全为\(1\)(?不算),那么存 ...
- 「PKUSC2018」神仙的游戏
题目链接 比如说上面\(|S|\)为12的字符串,我们欲求出\(f(9)\)的值,那么上面相同颜色的字符必须两两能够匹配.也就是说,同种颜色的字符集里不能同时出现0和1.如果只考虑同种颜色集里相邻的两 ...
- 【LOJ】#6436. 「PKUSC2018」神仙的游戏
题解 感觉智商为0啊QAQ 显然对于一个长度为\(len\)的border,每个点同余\(n - len\)的部分必然相等 那么我们求一个\(f[a]\)数组,如果存在\(s[x] = 0\)且\(s ...
- LOJ 6436 「PKUSC2018」神仙的游戏——思路+卷积
题目:https://loj.ac/problem/6436 看题解才会. 有长为 i 的 border ,就是有长为 n-i 的循环节. 考虑如果 x 位置上是 0 . y 位置上是 1 ,那么长度 ...
- LOJ #6436. 「PKUSC2018」神仙的游戏
题目分析 通过画图分析,如果存在border长度为len,则原串一定是长度为n-len的循环串. 考虑什么时候无法形成长度为len的循环串. 显然是两个不同的字符的距离为len的整数倍时,不存在这样的 ...
- loj6436【PKUSC2018】神仙的游戏
$|S| \le 5 \times 10^5$ 题解 这题直接用通配符匹配的套路会错,因为重复部分的$?$可能同时被当做了$0$和$1$ 有长度为$i$的公共前缀后缀等价于有长度为$n-i$的循环节: ...
- 【LOJ6436】【PKUSC2018】神仙的游戏(NTT)
[LOJ6436][PKUSC2018]神仙的游戏(NTT) 题面 LOJ 题解 看到\(zsy\)从\(PKUSC\)回来就秒掉了这种神仙题 吓得我也赶快看了看\(PKUSC\)都有些什么神仙题 然 ...
随机推荐
- base全家桶的安装使用方法
base编码是Binary-to-text encoding的一种实现方法,它可以把二进制数据(含不可打印的字符)编码成可打印字符序列. 本文会不定时收录“base全家桶”:base64.base32 ...
- Mysql分表和分区的区别、分库和分表区别
一,什么是mysql分表,分区 什么是分表,从表面意思上看呢,就是把一张表分成N多个小表,具体请看:mysql分表的3种方法. 什么是分区,分区呢就是把一张表的数据分成N多个区块,这些区块可以在同一个 ...
- outlook 升级 及邮件同步方式设置
**office(outlook2010 32B)升级到office2016 64B时的操作 1.删除office(excel. word等) 2.选择offcie2016 安装程序安装 (outlo ...
- 在textarea和input光标处插入内容,支持ie
项目需求,用户要能够输入和点击外面的公式去插入到textaera中,试了好几种方法,有的是在谷歌下好使,在ie下不好使,最后找到了下面这个方法,目前在ie8以上都可以生效.直接上代码 function ...
- CSS属性margin、padding的区别
原始状态 不设置margin和padding的状态 margin 设置外边距之后的状态 padding 设置内边距之后的状态 ,注意是撑开,外框高宽由300px变成450px. 说明:本文为原创作品, ...
- ASE19团队项目beta阶段Backend组 scrum7 记录
本次会议于12月13日,19:30在微软北京西二号楼sky garden召开,持续10分钟. 与会人员:Hao Wang, Lihao Ran, Xin Kang 请假人员:Zhikai Chen 每 ...
- C和指针--命令行参数
1.命令行参数 C程序的main函数具有两个形参,第1个通常称为argc,它表示命令行参数的数目.第2个称为argv,它指向一组参数值.由于参数的数目并没有内在的限制,所以argv指向这组参数值(本质 ...
- dl pthread m库的含义
dl:dlopen dlerror dlclose dlsym等函数的库 m:math.h中声明的库函数,比如log10等 pthread:线程建立函数 参考: Linux 编译C程序遇到依赖libm ...
- .NET Core中使用水印
.NET Core中使用水印 在项目中,我需要给上传的图片添加水印,通过网上查找针对.NET Core 的找到两个方案: 使用 CoreCompat.System.Drawing 及用于非Window ...
- 用js刷剑指offer(重建二叉树)
题目描述 输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树.假设输入的前序遍历和中序遍历的结果中都不含重复的数字.例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7, ...