传送门

思路

首先通过各种手玩/找规律/严谨证明,发现当\(n-i\)为border当且仅当对于任意\(k\in[0,i)\),模\(i\)余\(k\)的位置没有同时出现0和1。

换句话说,拿出任意一个1的位置\(x\),一个0的位置\(y\),那么对于\(|x-y|\)的所有约数\(i\),\(n-i\)均不合法。

考虑用NTT优化这个过程:记两个多项式\(A(x),B(x)\)。若\(s_i=0\)则\([x^i]A(x)=1\);若\(s_i=1\)则\([x^{n-i}]B(x)=1\)。然后把\(A\)和\(B\)卷积起来即可。

代码

#include<bits/stdc++.h>
clock_t t=clock();
namespace my_std{
using namespace std;
#define pii pair<int,int>
#define fir first
#define sec second
#define MP make_pair
#define rep(i,x,y) for (int i=(x);i<=(y);i++)
#define drep(i,x,y) for (int i=(x);i>=(y);i--)
#define go(x) for (int i=head[x];i;i=edge[i].nxt)
#define templ template<typename T>
#define sz 4004040
#define mod 998244353ll
typedef long long ll;
typedef double db;
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
templ inline T rnd(T l,T r) {return uniform_int_distribution<T>(l,r)(rng);}
templ inline bool chkmax(T &x,T y){return x<y?x=y,1:0;}
templ inline bool chkmin(T &x,T y){return x>y?x=y,1:0;}
templ inline void read(T& t)
{
t=0;char f=0,ch=getchar();double d=0.1;
while(ch>'9'||ch<'0') f|=(ch=='-'),ch=getchar();
while(ch<='9'&&ch>='0') t=t*10+ch-48,ch=getchar();
if(ch=='.'){ch=getchar();while(ch<='9'&&ch>='0') t+=d*(ch^48),d*=0.1,ch=getchar();}
t=(f?-t:t);
}
template<typename T,typename... Args>inline void read(T& t,Args&... args){read(t); read(args...);}
char __sr[1<<21],__z[20];int __C=-1,__zz=0;
inline void Ot(){fwrite(__sr,1,__C+1,stdout),__C=-1;}
inline void print(register int x)
{
if(__C>1<<20)Ot();if(x<0)__sr[++__C]='-',x=-x;
while(__z[++__zz]=x%10+48,x/=10);
while(__sr[++__C]=__z[__zz],--__zz);__sr[++__C]='\n';
}
void file()
{
#ifdef NTFOrz
freopen("a.in","r",stdin);
#endif
}
inline void chktime()
{
#ifndef ONLINE_JUDGE
cout<<(clock()-t)/1000.0<<'\n';
#endif
}
#ifdef mod
ll ksm(ll x,int y){ll ret=1;for (;y;y>>=1,x=x*x%mod) if (y&1) ret=ret*x%mod;return ret;}
ll inv(ll x){return ksm(x,mod-2);}
#else
ll ksm(ll x,int y){ll ret=1;for (;y;y>>=1,x=x*x) if (y&1) ret=ret*x;return ret;}
#endif
// inline ll mul(ll a,ll b){ll d=(ll)(a*(double)b/mod+0.5);ll ret=a*b-d*mod;if (ret<0) ret+=mod;return ret;}
}
using namespace my_std; int r[sz],limit;
void NTT_init(int n)
{
limit=1;int l=-1;
while (limit<=n+n) limit<<=1,++l;
rep(i,0,limit-1) r[i]=(r[i>>1]>>1)|((i&1)<<l);
}
void NTT(ll *a,int type)
{
rep(i,0,limit-1) if (i<r[i]) swap(a[i],a[r[i]]);
for (int mid=1;mid<limit;mid<<=1)
{
ll Wn=ksm(3,(mod-1)/mid>>1);if (type==-1) Wn=inv(Wn);
for (int len=mid<<1,j=0;j<limit;j+=len)
{
ll w=1;
for (int k=0;k<mid;k++,w=w*Wn%mod)
{
ll x=a[j+k],y=a[j+k+mid]*w%mod;
a[j+k]=(x+y)%mod;a[j+k+mid]=(x-y+mod)%mod;
}
}
}
if (type==1) return;
ll I=inv(limit);
rep(i,0,limit-1) a[i]=a[i]*I%mod;
} int n;
char s[sz]; ll tmp1[sz],tmp2[sz],a[sz];
ll ans; int main()
{
file();
cin>>(s+1);n=strlen(s+1);
rep(i,1,n) if (s[i]=='0') tmp1[i]=1;
rep(i,1,n) if (s[i]=='1') tmp2[n-i]=1;
NTT_init(n);
NTT(tmp1,1);NTT(tmp2,1);
rep(i,0,limit-1) tmp1[i]=tmp1[i]*tmp2[i]%mod;
NTT(tmp1,-1);
rep(i,1,n+n) a[i]=tmp1[i];
rep(i,1,n-1)
{
bool flg=1;
for (int j=i;j<n;j+=i) flg&=(a[n-j]==0&&a[n+j]==0);
if (flg) ans^=1ll*(n-i)*(n-i);
}
ans^=1ll*n*n;
cout<<ans;
return 0;
}

LOJ6436. 「PKUSC2018」神仙的游戏 [NTT]的更多相关文章

  1. LOJ #6436. 「PKUSC2018」神仙的游戏(字符串+NTT)

    题面 LOJ #6436. 「PKUSC2018」神仙的游戏 题解 参考 yyb 的口中的长郡最强选手 租酥雨大佬的博客 ... 一开始以为 通配符匹配 就是类似于 BZOJ 4259: 残缺的字符串 ...

  2. loj#6436. 「PKUSC2018」神仙的游戏(NTT)

    题面 传送门 题解 一旦字符串踏上了通配符的不归路,它就永远脱离了温暖的字符串大家庭的怀抱 用人话说就是和通配符扯上关系的字符串就不是个正常的字符串了比如说这个 让我们仔细想想,如果一个长度为\(le ...

  3. loj#6436. 「PKUSC2018」神仙的游戏(生成函数)

    题意 链接 Sol 生成函数题都好神仙啊qwq 我们考虑枚举一个长度\(len\).有一个结论是如果我们按\(N - len\)的余数分类,若同一组内的全为\(0\)或全为\(1\)(?不算),那么存 ...

  4. 「PKUSC2018」神仙的游戏

    题目链接 比如说上面\(|S|\)为12的字符串,我们欲求出\(f(9)\)的值,那么上面相同颜色的字符必须两两能够匹配.也就是说,同种颜色的字符集里不能同时出现0和1.如果只考虑同种颜色集里相邻的两 ...

  5. 【LOJ】#6436. 「PKUSC2018」神仙的游戏

    题解 感觉智商为0啊QAQ 显然对于一个长度为\(len\)的border,每个点同余\(n - len\)的部分必然相等 那么我们求一个\(f[a]\)数组,如果存在\(s[x] = 0\)且\(s ...

  6. LOJ 6436 「PKUSC2018」神仙的游戏——思路+卷积

    题目:https://loj.ac/problem/6436 看题解才会. 有长为 i 的 border ,就是有长为 n-i 的循环节. 考虑如果 x 位置上是 0 . y 位置上是 1 ,那么长度 ...

  7. LOJ #6436. 「PKUSC2018」神仙的游戏

    题目分析 通过画图分析,如果存在border长度为len,则原串一定是长度为n-len的循环串. 考虑什么时候无法形成长度为len的循环串. 显然是两个不同的字符的距离为len的整数倍时,不存在这样的 ...

  8. loj6436【PKUSC2018】神仙的游戏

    $|S| \le 5 \times 10^5$ 题解 这题直接用通配符匹配的套路会错,因为重复部分的$?$可能同时被当做了$0$和$1$ 有长度为$i$的公共前缀后缀等价于有长度为$n-i$的循环节: ...

  9. 【LOJ6436】【PKUSC2018】神仙的游戏(NTT)

    [LOJ6436][PKUSC2018]神仙的游戏(NTT) 题面 LOJ 题解 看到\(zsy\)从\(PKUSC\)回来就秒掉了这种神仙题 吓得我也赶快看了看\(PKUSC\)都有些什么神仙题 然 ...

随机推荐

  1. 通过pip命令导出和导入Python环境安装包

    我们在开发完代码后,一般需要将依赖包导出,然后在移植到其他系统使去安装,保证环境正常   导出Python环境安装包[root@bogon ~]# pip freeze > packages.t ...

  2. Java内存模型(JMM)

    JVM与线程(线程在JVM中) 1.JVM什么时候启动?         类被调用时启动,此时会启动JVM线程然后再是其他的线程(main) 2.JVM内存区域 除了程序计数器(PC)之外都有可能发生 ...

  3. 搭建nginx静态资源站

    搭建静态资源站包括以下几部分: root指令与alias指令的区别 使用gzip压缩资源 如何访问指定目录下的全部资源文件 如何限制访问流量 如何自定义log日志 root指令与alias指令的区别 ...

  4. Could not retrieve transaction read-only status from server问题排查

    今天发现save task的时候经常后台会报这个错,而且有的时候还会卡住等20几分钟才执行完. 2019-11-12 15:08:29.410 http-nio-9080-exec-6 ERROR o ...

  5. JoinableQueue类与线程

    生产者消费者的问题及其解决办法 问题 在之前的生产者消费者模型中,生产者和消费者只有一个, 那么生产者往队列里put几次,消费者就get几次,但是存在一个问题, 生产者不一定只有一个,消费者也不一定只 ...

  6. 前端知识总结--css用div画环形圆

    如何用最少的div画最多的环形?如下图所示最少需要多少个div? 暂时想到的利用div的边框.内外阴影及befor和after的伪元素实现 以下代码可以实现上图效果: <style> di ...

  7. 解决在Linux操作系统下无法连接MySQL服务端的问题

    遇到这种问题的时候我们需要考虑的是防火墙规则,因为防火墙默认是禁止所有端口访问的,所以我们需要添加一个访问端口来连接MySQL. 命令如下: 允许某端口   firewall-cmd  --zone= ...

  8. Vs2017 FrameWork EF Mysql Mvc 三层整合1

    1  运行环境   vs2017   Net FromWork 4.6.2  手动版 没有 ado.net 实体数据模型 2 NuGet  MySql.Data.Entity 6.10.9, MySq ...

  9. mongodb的基本操作之更新不存在的数据

    查找y为100的数据 db.test_collection.find({y:100}) 发现没有,这时候将y为100的数据更新为y为999的数据 db.test_collection.update({ ...

  10. Paper Reading:FPN

    FPN 论文:Feature Pyramid Networks for Object Detection 发表时间:2017 发表作者:(Facebook AI Research)Tsung-Yi L ...