通过GAN生成式对抗网络,产生mnist数据

引入包,数据约定等

import numpy as np
import matplotlib.pyplot as plt
import input_data #读取数据的一个工具文件,不影响理解
import tensorflow as tf # 获取数据
mnist = input_data.read_data_sets('data/', one_hot=True)
trainimg = mnist.train.images X = mnist.train.images[:, :]
batch_size = 64 #用来返回真实数据
def iterate_minibatch(x, batch_size, shuffle=True):
indices = np.arange(x.shape[0])
if shuffle:
np.random.shuffle(indices)
for i in range(0, x.shape[0]-1000, batch_size):
temp = x[indices[i:i + batch_size], :]
temp = np.array(temp) * 2 - 1
yield np.reshape(temp, (-1, 28, 28, 1))

GAN对象结构

class GAN(object):
def __init__(self):
#初始函数,在这里对初始化模型
def netG(self, z):
#生成器模型
def netD(self, x, reuse=False):
#判别器模型

生成器函数

对随机值z(维度为1,100),进行包装,伪造,产生伪造数据。

包装过程概括为:全连接->reshape->反卷积

包装过程中使用了batch_normalization,Leaky ReLU,dropout,tanh等技巧

   #对随机值z(维度为1,100),进行包装,伪造,产生伪造数据。
#包装过程概括为:全连接->reshape->反卷积
#包装过程中使用了batch_normalization,Leaky ReLU,dropout,tanh等技巧
def netG(self,z,alpha=0.01):
with tf.variable_scope('generator') as scope:
layer1 = tf.layers.dense(z, 4 * 4 * 512) # 这是一个全连接层,输出 (n,4*4*512)
layer1 = tf.reshape(layer1, [-1, 4, 4, 512])
# batch normalization
layer1 = tf.layers.batch_normalization(layer1, training=True) # 做BN标准化处理
# Leaky ReLU
layer1 = tf.maximum(alpha * layer1, layer1)
# dropout
layer1 = tf.nn.dropout(layer1, keep_prob=0.8) # 4 x 4 x 512 to 7 x 7 x 256
layer2 = tf.layers.conv2d_transpose(layer1, 256, 4, strides=1, padding='valid')
layer2 = tf.layers.batch_normalization(layer2, training=True)
layer2 = tf.maximum(alpha * layer2, layer2)
layer2 = tf.nn.dropout(layer2, keep_prob=0.8) # 7 x 7 256 to 14 x 14 x 128
layer3 = tf.layers.conv2d_transpose(layer2, 128, 3, strides=2, padding='same')
layer3 = tf.layers.batch_normalization(layer3, training=True)
layer3 = tf.maximum(alpha * layer3, layer3)
layer3 = tf.nn.dropout(layer3, keep_prob=0.8) # 14 x 14 x 128 to 28 x 28 x 1
logits = tf.layers.conv2d_transpose(layer3, 1, 3, strides=2, padding='same')
# MNIST原始数据集的像素范围在0-1,这里的生成图片范围为(-1,1)
# 因此在训练时,记住要把MNIST像素范围进行resize
outputs = tf.tanh(logits) return outputs

判别器函数

通过深度卷积+全连接的形式,判别器将输入分类为真数据,还是假数据。

    def netD(self, x, reuse=False,alpha=0.01):
with tf.variable_scope('discriminator') as scope:
if reuse:
scope.reuse_variables()
layer1 = tf.layers.conv2d(x, 128, 3, strides=2, padding='same')
layer1 = tf.maximum(alpha * layer1, layer1)
layer1 = tf.nn.dropout(layer1, keep_prob=0.8) # 14 x 14 x 128 to 7 x 7 x 256
layer2 = tf.layers.conv2d(layer1, 256, 3, strides=2, padding='same')
layer2 = tf.layers.batch_normalization(layer2, training=True)
layer2 = tf.maximum(alpha * layer2, layer2)
layer2 = tf.nn.dropout(layer2, keep_prob=0.8) # 7 x 7 x 256 to 4 x 4 x 512
layer3 = tf.layers.conv2d(layer2, 512, 3, strides=2, padding='same')
layer3 = tf.layers.batch_normalization(layer3, training=True)
layer3 = tf.maximum(alpha * layer3, layer3)
layer3 = tf.nn.dropout(layer3, keep_prob=0.8) # 4 x 4 x 512 to 4*4*512 x 1
flatten = tf.reshape(layer3, (-1, 4 * 4 * 512))
f = tf.layers.dense(flatten, 1)
return f

初始化函数

有一个前置训练,将真实数据喂给判别器,训练判别器的鉴别能力

    # 有一个前置训练,将真实数据喂给判别器,训练判别器的鉴别能力
def __init__(self):
self.z = tf.placeholder(tf.float32, shape=[batch_size, 100], name='z') # 随机输入值
self.x = tf.placeholder(tf.float32, shape=[batch_size, 28, 28, 1], name='real_x') # 图片值 self.fake_x = self.netG(self.z) # 将随机输入,包装为伪造图片值 self.pre_logits = self.netD(self.x, reuse=False) # 判别器预训练时,判别器对真实数据的判别情况-未sigmoid处理
self.real_logits = self.netD(self.x, reuse=True) # 判别器对真实数据的判别情况-未sigmoid处理
self.fake_logits = self.netD(self.fake_x, reuse=True) # 判别器对伪造数据的判别情况-未sigmoid处理 # 预训练时判别器,判别器将真实数据判定为真的得分情况。
self.loss_pre_D = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=self.pre_logits,
labels=tf.ones_like(self.pre_logits)))
# 训练时,判别器将真实数据判定为真,将伪造数据判定为假的得分情况。
self.loss_D = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=self.real_logits,
labels=tf.ones_like(self.real_logits))) + \
tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=self.fake_logits,
labels=tf.zeros_like(self.fake_logits)))
# 训练时,生成器伪造的数据,被判定为真实数据的得分情况。
self.loss_G = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=self.fake_logits,
labels=tf.ones_like(self.fake_logits))) # 获取生成器和判定器对应的变量地址,用于更新变量
t_vars = tf.trainable_variables()
self.g_vars = [var for var in t_vars if var.name.startswith("generator")]
self.d_vars = [var for var in t_vars if var.name.startswith("discriminator")]

开始训练

gan = DCGAN()
#预训练时的梯度优化函数
d_pre_optim = tf.train.AdamOptimizer(learning_rate=0.001, beta1=0.4).minimize(gan.loss_pre_D, var_list=gan.d_vars)
#判别器的梯度优化函数
d_optim = tf.train.AdamOptimizer(learning_rate=0.001, beta1=0.4).minimize(gan.loss_D, var_list=gan.d_vars)
#预训练时的梯度优化函数
g_optim = tf.train.AdamOptimizer(learning_rate=0.001, beta1=0.4).minimize(gan.loss_G, var_list=gan.g_vars) init = tf.global_variables_initializer() with tf.Session() as sess:
sess.run(init)
#对判别器的预训练,训练了两个epoch
for i in range(2):
print('判别器初始训练,第' + str(i) + '次包')
for x_batch in iterate_minibatch(X, batch_size=batch_size):
loss_pre_D, _ = sess.run([gan.pre_logits, d_pre_optim],
feed_dict={
gan.x: x_batch
})
#训练5个epoch
for epoch in range(5):
print('对抗' + str(epoch) + '次包')
avg_loss = 0
count = 0
for x_batch in iterate_minibatch(X, batch_size=batch_size):
z_batch = np.random.uniform(-1, 1, size=(batch_size, 100)) # 随机起点值 loss_D, _ = sess.run([gan.loss_D, d_optim],
feed_dict={
gan.z: z_batch,
gan.x: x_batch
}) loss_G, _ = sess.run([gan.loss_G, g_optim],
feed_dict={
gan.z: z_batch,
# gan.x: np.zeros(z_batch.shape)
}) avg_loss += loss_D
count += 1 # 显示预测情况
if True:
avg_loss /= count
z = np.random.normal(size=(batch_size, 100))
excerpt = np.random.randint(100, size=batch_size)
needTest = np.reshape(X[excerpt, :], (-1, 28, 28, 1))
fake_x, real_logits, fake_logits = sess.run([gan.fake_x, gan.real_logits, gan.fake_logits],
feed_dict={gan.z: z, gan.x: needTest})
# accuracy = (np.sum(real_logits > 0.5) + np.sum(fake_logits < 0.5)) / (2 * batch_size)
print('real_logits')
print(len(real_logits))
print('fake_logits')
print(len(fake_logits))
print('\ndiscriminator loss at epoch %d: %f' % (epoch, avg_loss))
# print('\ndiscriminator accuracy at epoch %d: %f' % (epoch, accuracy))
print('----')
print() # curr_img = np.reshape(trainimg[i, :], (28, 28)) # 28 by 28 matrix
curr_img = np.reshape(fake_x[0], (28, 28))
plt.matshow(curr_img, cmap=plt.get_cmap('gray'))
plt.show()
curr_img2 = np.reshape(fake_x[10], (28, 28))
plt.matshow(curr_img2, cmap=plt.get_cmap('gray'))
plt.show()
curr_img3 = np.reshape(fake_x[20], (28, 28))
plt.matshow(curr_img3, cmap=plt.get_cmap('gray'))
plt.show() curr_img4 = np.reshape(fake_x[30], (28, 28))
plt.matshow(curr_img4, cmap=plt.get_cmap('gray'))
plt.show() curr_img5 = np.reshape(fake_x[40], (28, 28))
plt.matshow(curr_img5, cmap=plt.get_cmap('gray'))
plt.show()
# plt.figure(figsize=(28, 28)) # plt.title("" + str(i) + "th Training Data "
# + "Label is " + str(curr_label))
# print("" + str(i) + "th Training Data "
# + "Label is " + str(curr_label)) # plt.scatter(X[:, 0], X[:, 1])
# plt.scatter(fake_x[:, 0], fake_x[:, 1])
# plt.show()

结果

下载链接

GAN生成式对抗网络(三)——mnist数据生成的更多相关文章

  1. GAN生成式对抗网络(四)——SRGAN超高分辨率图片重构

    论文pdf 地址:https://arxiv.org/pdf/1609.04802v1.pdf 我的实际效果 清晰度距离我的期待有距离. 颜色上面存在差距. 解决想法 增加一个颜色判别器.将颜色值反馈 ...

  2. GAN生成式对抗网络(一)——原理

    生成式对抗网络(GAN, Generative Adversarial Networks )是一种深度学习模型 GAN包括两个核心模块. 1.生成器模块 --generator 2.判别器模块--de ...

  3. 不要怂,就是GAN (生成式对抗网络) (一)

    前面我们用 TensorFlow 写了简单的 cifar10 分类的代码,得到还不错的结果,下面我们来研究一下生成式对抗网络 GAN,并且用 TensorFlow 代码实现. 自从 Ian Goodf ...

  4. 不要怂,就是GAN (生成式对抗网络) (一): GAN 简介

    前面我们用 TensorFlow 写了简单的 cifar10 分类的代码,得到还不错的结果,下面我们来研究一下生成式对抗网络 GAN,并且用 TensorFlow 代码实现. 自从 Ian Goodf ...

  5. 不要怂,就是GAN (生成式对抗网络) (二):数据读取和操作

    前面我们了解了 GAN 的原理,下面我们就来用 TensorFlow 搭建 GAN(严格说来是 DCGAN,如无特别说明,本系列文章所说的 GAN 均指 DCGAN),如前面所说,GAN 分为有约束条 ...

  6. 不要怂,就是GAN (生成式对抗网络) (二)

    前面我们了解了 GAN 的原理,下面我们就来用 TensorFlow 搭建 GAN(严格说来是 DCGAN,如无特别说明,本系列文章所说的 GAN 均指 DCGAN),如前面所说,GAN 分为有约束条 ...

  7. 不要怂,就是GAN (生成式对抗网络) (六):Wasserstein GAN(WGAN) TensorFlow 代码

    先来梳理一下我们之前所写的代码,原始的生成对抗网络,所要优化的目标函数为: 此目标函数可以分为两部分来看: ①固定生成器 G,优化判别器 D, 则上式可以写成如下形式: 可以转化为最小化形式: 我们编 ...

  8. 不要怂,就是GAN (生成式对抗网络) (三):判别器和生成器 TensorFlow Model

    在 /home/your_name/TensorFlow/DCGAN/ 下新建文件 utils.py,输入如下代码: import scipy.misc import numpy as np # 保存 ...

  9. 不要怂,就是GAN (生成式对抗网络) (四):训练和测试 GAN

    在 /home/your_name/TensorFlow/DCGAN/ 下新建文件 train.py,同时新建文件夹 logs 和文件夹 samples,前者用来保存训练过程中的日志和模型,后者用来保 ...

随机推荐

  1. golang跨平台编译

    // 目标平台linux 64 SET CGO_ENABLED=0 SET GOOS=linux SET GOARCH=amd64 go build //目标平台windows SET CGO_ENA ...

  2. 题解-PKUWC2018 猎人杀

    Problem loj2541 题意概要:给定 \(n\) 个人的倒霉度 \(\{w_i\}\),每回合会有一个人死亡,每个人这回合死亡的概率为 自己的倒霉度/目前所有存活玩家的倒霉度之和,求第 \( ...

  3. 将自定义dockerfile生成的image推送到仓库中

    本文为以阿里云的案例方法,其他方法未尝试 1.注册阿里云账号 2.设置密码并通过docker登录 3.创建命名空间 4.创建镜像仓库 创建仓库时,需要选择代码源的仓库储存的方式,这里我用的是gitHu ...

  4. 使用swagger在netcorewebapi项目中自动生成文档

    一.背景 随着前后端分离模式大行其道,我们需要将后端接口撰写成文档提供给前端,前端可以查看我们的接口,并测试,提高我们的开发效率,减少无效的沟通.在此情况下,通过代码自动生成文档,这种需求应运而生,s ...

  5. multer实现图片上传

    multer实现图片上传: ejs代码: <!DOCTYPE html> <html lang="en"> <head> <meta ch ...

  6. 3.Java集合-HashSet实现原理及源码分析

    一.HashSet概述: HashSet实现Set接口,由哈希表(实际上是一个HashMap实例)支持,它不保证set的迭代顺序很久不变.此类允许使用null元素 二.HashSet的实现: 对于Ha ...

  7. 二〇一八-网易秋招面试解析(Java)

    一轮面试: Java内存模型讲一下 GC算法,知道的都讲一下 HashMap,get,put实现 JsonWebToken具体实现流程(简历) Spring AOP如何实现,写一个AOP功能的主要流程 ...

  8. Neutron服务组件

    OpenStack 项目中的Neutron 网络服务组件中提供虚拟机实例对网络的连接,其中plug-ins 能够提供对多种网络设备和软件的支持,使OpenStack 环境的构建和部署具备更多的灵活性, ...

  9. PHP 二维数组排序函数的应用 array_multisort()

    <?php $arrayData = array( array("name"=>"泰山", "age"=>"23 ...

  10. MongoDB C#samus驱动

    MongoDB的c#驱动有两种,官方驱动和samus驱动,不过我更喜欢samus驱动,因为samus驱动提供了丰富的linq操作. 官方驱动:https://github.com/mongodb/mo ...