漫山遍野都是fake的光影。

题目

  1. [LGP4859] 已经没有什么好害怕的了

    给定两个长度为n的数组a和b,将a中元素与b中元素配对,求满足ai>bj的配对(i,j)个数减去满足ai<bi的配对(i,j)个数恰好为k的方案数,保证ab中无重复元素。

  2. [某年NOI欢乐赛] 决斗

    给定两个长度为n的数组a和b,将a中元素与b中元素随机配对,求满足ai≥bj的配对(i,j)个数k次方的期望。

题解

对于前一个问题,我们转换为求满足ai>(≥)bj的配对(i,j)恰好为k=(n+k)/2的方案数。这样就能与第二个问题形式上保持一致。称这样配对的配对为“配对”(雾)。

其次将ab从小到大排序,然后依次为a数组配对,设f[i,j]表示前i个位置上确定了j个“配对”的方案数(跳过剩下的i-j对不为“配对”的配对的转移),w[i]表示满足bj≤ai的最大的j,有转移 f[i,j]=f[i-1,j]+f[i-1,j-1]*(w[i]-j+1)。后边那个系数其实是(w[i]-w[i-1])+(w[i-1]-(j-1))得来的。

如果你有兴趣尝试dp前i个位置上恰好有j个配对,会发现不为“配对”的情况根本dp不动。

考虑对f[n,i]统一确定剩下的(n-i)个配对,记g[i]=f[n,i]*(n-i)!。显然g[i]的统计是有重复的。具体的,设h[i]为恰好有i个“配对”的方案数,h[i]在g[j]中被统计C(i,j)次,其中i≥j。

即g[i]=Σ[j≥i] h[j]*C(j,i),移项得h[i]=g[i] Σ[j>i] h[j]*C(j,i),可以递推求解了。

后一个问题的后续操作已经不重要了你说是吧

参考实现

#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int N=2019;
const int mod=1e9+9; int n,K,a[N],b[N],w[N],f[N][N],c[N][N]; int main() {
scanf("%d%d",&n,&K);
for(int i=1; i<=n; ++i) scanf("%d",a+i);
for(int i=1; i<=n; ++i) scanf("%d",b+i);
if((n+K)&1) {
puts("0");
return 0;
}
K=(n+K)/2;
sort(a+1,a+n+1);
sort(b+1,b+n+1);
for(int i=1,j=0; i<=n; ++i) {
while(j<n&&b[j+1]<=a[i]) ++j;
w[i]=j;
}
for(int i=0; i<=n; ++i) {
c[i][0]=1;
for(int j=1; j<=i; ++j)
c[i][j]=(c[i-1][j-1]+c[i-1][j])%mod;
}
f[0][0]=1;
for(int i=1; i<=n; ++i) {
f[i][0]=f[i-1][0];
int J=min(i,w[i]);
for(int j=1; j<=J; ++j)
f[i][j]=(f[i-1][j]+(ll)f[i-1][j-1]*(w[i]-j+1)%mod)%mod;
for(int j=J+1; j<=i; ++j)
f[i][j]=f[i-1][j];
}
int fc=1;
for(int i=n; i>=K; --i) {
w[i]=(ll)f[n][i]*fc%mod;
for(int j=i+1; j<=n; ++j)
w[i]=(w[i]+mod-(ll)w[j]*c[j][i]%mod)%mod;
fc=(ll)fc*(n-i+1)%mod;
}
printf("%d\n",w[K]);
return 0;
}

[LGP4859,...] 一类奇怪的容斥套DP的更多相关文章

  1. hdu-5794 A Simple Chess(容斥+lucas+dp)

    题目链接: A Simple Chess Time Limit: 2000/1000 MS (Java/Others)     Memory Limit: 65536/65536 K (Java/Ot ...

  2. 浅析容斥和DP综合运用

    浅析容斥和DP综合运用 前言 众所周知在数数题中有一种很重要的计数方法--容斥.但是容斥有一个很大的缺陷:枚举子集的复杂度过高.所以对于数据规模较大的情况会很乏力,那么我们就只能引入容斥DP. 复习一 ...

  3. 【BZOJ-4455】小星星 容斥 + 树形DP

    4455: [Zjoi2016]小星星 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 204  Solved: 137[Submit][Status] ...

  4. HUST 1569(Burnside定理+容斥+数位dp+矩阵快速幂)

    传送门:Gift 题意:由n(n<=1e9)个珍珠构成的项链,珍珠包含幸运数字(有且仅由4或7组成),取区间[L,R]内的数字,相邻的数字不能相同,且旋转得到的相同的数列为一种,为最终能构成多少 ...

  5. bzoj 3622 已经没有什么好害怕的了 类似容斥,dp

    3622: 已经没有什么好害怕的了 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1213  Solved: 576[Submit][Status][ ...

  6. 洛谷P5206 [WC2019]数树 [容斥,DP,生成函数,NTT]

    传送门 Orz神仙题,让我长了许多见识. 长式子警告 思路 y=1 由于y=1时会导致后面一些式子未定义,先抓出来. printf("%lld",opt==0?1:(opt==1? ...

  7. LOJ #2541. 「PKUWC 2018」猎人杀(容斥 , 期望dp , NTT优化)

    题意 LOJ #2541. 「PKUWC 2018」猎人杀 题解 一道及其巧妙的题 , 参考了一下这位大佬的博客 ... 令 \(\displaystyle A = \sum_{i=1}^{n} w_ ...

  8. HDU 4632 Palindrome subsequence & FJUT3681 回文子序列种类数(回文子序列个数/回文子序列种数 容斥 + 区间DP)题解

    题意1:问你一个串有几个不连续子序列(相同字母不同位置视为两个) 题意2:问你一个串有几种不连续子序列(相同字母不同位置视为一个,空串视为一个子序列) 思路1:由容斥可知当两个边界字母相同时 dp[i ...

  9. [LOJ2542][PKUWC2018]随机游走(MinMax容斥+树形DP)

    MinMax容斥将问题转化为求x到S中任意点的最小时间. 树形DP,直接求概率比较困难,考虑只求系数.最后由于x节点作为树根无父亲,所以求出的第二个系数就是答案. https://blog.csdn. ...

随机推荐

  1. Java当中的IO流-时间api(下)-上

    Java当中的IO流(下)-上 日期和时间 日期类:java.util.Date 系统时间: long time = System.currentTimeMillis(); public class ...

  2. DelayQueue实现延迟队列

    public class Q { public static void main(String[] args) throws Exception { DelayQueue<Order> o ...

  3. AcWing:112. 雷达设备(贪心 + 笛卡尔坐标系化区间)

    假设海岸是一条无限长的直线,陆地位于海岸的一侧,海洋位于另外一侧. 每个小岛都位于海洋一侧的某个点上. 雷达装置均位于海岸线上,且雷达的监测范围为d,当小岛与某雷达的距离不超过d时,该小岛可以被雷达覆 ...

  4. HDU 5831 Rikka with Parenthesis II ——(括号匹配问题)

    用一个temp变量,每次出现左括号,+1,右括号,-1:用ans来记录出现的最小的值,很显然最终temp不等于0或者ans比-2小都是不可以的.-2是可以的,因为:“))((”可以把最左边的和最右边的 ...

  5. ZooKeeper的简述

    一.简介 ZooKeeper是一个高性能,分布式的,开源分布式应用协调服务.它提供了简单原始的功能,分布式应用可以基于它实现更高级的服务,比如同步,集群管理,命名空间,配置维护等.ZooKeeper使 ...

  6. git上传项目已经删除文件,但是Jenkins中没有删除

    jenkins 缓存造成的,需要清理工作空间

  7. Nginx-rtmp直播之业务流程分析

    1. 综述 1.1 直播原理 使用 obs 向 nginx 推送一个直播流,该直播流经 nginx-rtmp 的 ngx_rtmp_live_module 模块转发给 application live ...

  8. 将Chrome中的缓存数据移出C盘

    Chrome浏览器会默认的将用户的缓存是数据存放于  C:\Users\你的用户名\AppData\Local\Google\Chrome\User Data文件夹内.用久了之后,就会积攒大量缓存数据 ...

  9. tp5中很牛皮的一句sql语句,三个条件(两个不确定条件,一个硬性条件)

    $result = Db::table('xxxxxx')   // 表名 ->alias('g') ->join('xxxxx_2 u','g.user_id = u.id') -> ...

  10. php laravel左连接leftJoin多条where语句

    通常情况下我们在做leftjoin连接时需要对不止一个条件进行进行匹配,这时候就需要使用闭包方式,如下: leftjoin('db', function ($join) {···}); leftjoi ...