[LGP4859,...] 一类奇怪的容斥套DP
漫山遍野都是fake的光影。
题目
[LGP4859] 已经没有什么好害怕的了
给定两个长度为n的数组a和b,将a中元素与b中元素配对,求满足ai>bj的配对(i,j)个数减去满足ai<bi的配对(i,j)个数恰好为k的方案数,保证ab中无重复元素。
[某年NOI欢乐赛] 决斗
给定两个长度为n的数组a和b,将a中元素与b中元素随机配对,求满足ai≥bj的配对(i,j)个数k次方的期望。
题解
对于前一个问题,我们转换为求满足ai>(≥)bj的配对(i,j)恰好为k=(n+k)/2的方案数。这样就能与第二个问题形式上保持一致。称这样配对的配对为“配对”(雾)。
其次将ab从小到大排序,然后依次为a数组配对,设f[i,j]表示前i个位置上确定了j个“配对”的方案数(跳过剩下的i-j对不为“配对”的配对的转移),w[i]表示满足bj≤ai的最大的j,有转移 f[i,j]=f[i-1,j]+f[i-1,j-1]*(w[i]-j+1)。后边那个系数其实是(w[i]-w[i-1])+(w[i-1]-(j-1))得来的。
如果你有兴趣尝试dp前i个位置上恰好有j个配对,会发现不为“配对”的情况根本dp不动。
考虑对f[n,i]统一确定剩下的(n-i)个配对,记g[i]=f[n,i]*(n-i)!。显然g[i]的统计是有重复的。具体的,设h[i]为恰好有i个“配对”的方案数,h[i]在g[j]中被统计C(i,j)次,其中i≥j。
即g[i]=Σ[j≥i] h[j]*C(j,i),移项得h[i]=g[i] Σ[j>i] h[j]*C(j,i),可以递推求解了。
后一个问题的后续操作已经不重要了你说是吧
参考实现
#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int N=2019;
const int mod=1e9+9;
int n,K,a[N],b[N],w[N],f[N][N],c[N][N];
int main() {
scanf("%d%d",&n,&K);
for(int i=1; i<=n; ++i) scanf("%d",a+i);
for(int i=1; i<=n; ++i) scanf("%d",b+i);
if((n+K)&1) {
puts("0");
return 0;
}
K=(n+K)/2;
sort(a+1,a+n+1);
sort(b+1,b+n+1);
for(int i=1,j=0; i<=n; ++i) {
while(j<n&&b[j+1]<=a[i]) ++j;
w[i]=j;
}
for(int i=0; i<=n; ++i) {
c[i][0]=1;
for(int j=1; j<=i; ++j)
c[i][j]=(c[i-1][j-1]+c[i-1][j])%mod;
}
f[0][0]=1;
for(int i=1; i<=n; ++i) {
f[i][0]=f[i-1][0];
int J=min(i,w[i]);
for(int j=1; j<=J; ++j)
f[i][j]=(f[i-1][j]+(ll)f[i-1][j-1]*(w[i]-j+1)%mod)%mod;
for(int j=J+1; j<=i; ++j)
f[i][j]=f[i-1][j];
}
int fc=1;
for(int i=n; i>=K; --i) {
w[i]=(ll)f[n][i]*fc%mod;
for(int j=i+1; j<=n; ++j)
w[i]=(w[i]+mod-(ll)w[j]*c[j][i]%mod)%mod;
fc=(ll)fc*(n-i+1)%mod;
}
printf("%d\n",w[K]);
return 0;
}
[LGP4859,...] 一类奇怪的容斥套DP的更多相关文章
- hdu-5794 A Simple Chess(容斥+lucas+dp)
题目链接: A Simple Chess Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Ot ...
- 浅析容斥和DP综合运用
浅析容斥和DP综合运用 前言 众所周知在数数题中有一种很重要的计数方法--容斥.但是容斥有一个很大的缺陷:枚举子集的复杂度过高.所以对于数据规模较大的情况会很乏力,那么我们就只能引入容斥DP. 复习一 ...
- 【BZOJ-4455】小星星 容斥 + 树形DP
4455: [Zjoi2016]小星星 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 204 Solved: 137[Submit][Status] ...
- HUST 1569(Burnside定理+容斥+数位dp+矩阵快速幂)
传送门:Gift 题意:由n(n<=1e9)个珍珠构成的项链,珍珠包含幸运数字(有且仅由4或7组成),取区间[L,R]内的数字,相邻的数字不能相同,且旋转得到的相同的数列为一种,为最终能构成多少 ...
- bzoj 3622 已经没有什么好害怕的了 类似容斥,dp
3622: 已经没有什么好害怕的了 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 1213 Solved: 576[Submit][Status][ ...
- 洛谷P5206 [WC2019]数树 [容斥,DP,生成函数,NTT]
传送门 Orz神仙题,让我长了许多见识. 长式子警告 思路 y=1 由于y=1时会导致后面一些式子未定义,先抓出来. printf("%lld",opt==0?1:(opt==1? ...
- LOJ #2541. 「PKUWC 2018」猎人杀(容斥 , 期望dp , NTT优化)
题意 LOJ #2541. 「PKUWC 2018」猎人杀 题解 一道及其巧妙的题 , 参考了一下这位大佬的博客 ... 令 \(\displaystyle A = \sum_{i=1}^{n} w_ ...
- HDU 4632 Palindrome subsequence & FJUT3681 回文子序列种类数(回文子序列个数/回文子序列种数 容斥 + 区间DP)题解
题意1:问你一个串有几个不连续子序列(相同字母不同位置视为两个) 题意2:问你一个串有几种不连续子序列(相同字母不同位置视为一个,空串视为一个子序列) 思路1:由容斥可知当两个边界字母相同时 dp[i ...
- [LOJ2542][PKUWC2018]随机游走(MinMax容斥+树形DP)
MinMax容斥将问题转化为求x到S中任意点的最小时间. 树形DP,直接求概率比较困难,考虑只求系数.最后由于x节点作为树根无父亲,所以求出的第二个系数就是答案. https://blog.csdn. ...
随机推荐
- 创建虚拟机,安装操作系统,xshell6远程链接
一.创建虚拟机 1. 首先安装vmware,注意在安装中,下面的两项不要勾选,一路下一步 2.完成安装打开之后,创建新的虚拟机 3.虚拟机创建完成,需要改配置 4.然后设置网段 5.查看服务,在运行状 ...
- Jmeter(十一)函数助手
可以在JMeter的选项菜单中找到函数助手对话框 我们可以从下拉列表中选择一个函数,并为其参数设定值.如图,表格的左边一列是函数参数的简要描述,右边一列是供用户填充参数的值.不同函数要求的参数也不同. ...
- CPU上下文切换分析
一.CPU上下文切换 1.上下文切换,有时也称做进程切换或任务切换,是指CPU从一个进程或线程切换到另一个进程或线程. 2.vmstat是一个常用的系统性能分析工具,主要用来分析系统内存使用情况,也常 ...
- brute爆破
0X01明文传输的表单爆破用户名和密码 不存在任何加密 直接爆破即可 当不存在用户名时: 当存在用户名时,密码错误: 这里由于靶场关了 所以我们用dvwa演示 但是dvwa没有以上的差别 所以我们默认 ...
- typedef void(*Fun) (void)是什么意思 函数指针(回调函数) 和函数对象总结
https://blog.csdn.net/FreeApe/article/details/49124043 bool (*pf)(const string &,const string &a ...
- TCP层recvmsg系统调用的实现分析
概述 recvmsg系统调用在tcp层的实现是tcp_recvmsg函数,该函数完成从接收队列中读取数据复制到用户空间的任务:函数在执行过程中会锁定控制块,避免软中断在tcp层的影响:函数会涉及从接收 ...
- win10无法连接windows服务器,无法连接SENS服务
本文链接:https://blog.csdn.net/weixin_38374974/article/details/80475566 膜拜大佬 首先,进入windows界面的时候,前期加载速度变得极 ...
- LeetCode 144. 二叉树的前序遍历(Binary Tree Preorder Traversal)
题目描述 给定一个二叉树,返回它的 前序 遍历. 示例: 输入: [1,null,2,3] 1 \ 2 / 3 输出: [1,2,3] 进阶: 递归算法很简单,你可以通过迭代算法完成吗? 解题思路 由 ...
- PHP中try catch的用法
异常(Exception)用于在指定的错误发生时改变脚本的正常流程. 什么是异常? PHP 5 提供了一种新的面向对象的错误处理方法. 异常处理用于在指定的错误(异常)情况发生时改变脚本的正常流程.这 ...
- Python学习笔记—Dict和set
dict Python内置了字典:dict的支持,dict全称dictionary,在其他语言中也称为map,使用键-值(key-value)存储,具有极快的查找速度. 举个例子,假设要根据同学的名字 ...