链接:https://www.luogu.org/problemnew/show/P3390

题意:矩阵快速幂模板题,思路和快速幂一致,只需提供矩阵的乘法即可。

AC代码:

#include<cstdio>
#include<cstring>
using namespace std; typedef long long LL; const int MOD=1e9+;
int n;
LL k; struct Mat{
LL m[][];
}a,e; Mat mul(Mat& x,Mat& y){
Mat res;
memset(res.m,,sizeof(res.m));
for(int i=;i<=n;++i)
for(int j=;j<=n;++j)
for(int l=;l<=n;++l){
res.m[i][j]+=x.m[i][l]*y.m[l][j]%MOD;
res.m[i][j]%=MOD;
}
return res;
} Mat qpow(Mat& x,LL k){
Mat ans=e;
while(k){
if(k&) ans=mul(ans,x);
x=mul(x,x);
k>>=;
}
return ans;
} int main(){
scanf("%d%lld",&n,&k);
for(int i=;i<=n;++i)
for(int j=;j<=n;++j)
scanf("%lld",&a.m[i][j]);
for(int i=;i<=n;++i)
e.m[i][i]=;
Mat ans=qpow(a,k);
for(int i=;i<=n;++i){
for(int j=;j<=n;++j)
printf("%lld ",ans.m[i][j]);
printf("\n");
}
return ;
}

luoguP3390(矩阵快速幂模板题)的更多相关文章

  1. hdu 2604 矩阵快速幂模板题

    /* 矩阵快速幂: 第n个人如果是m,有f(n-1)种合法结果 第n个人如果是f,对于第n-1和n-2个人有四种ff,fm,mf,mm其中合法的只有fm和mm 对于ffm第n-3个人只能是m那么有f( ...

  2. Final Destination II -- 矩阵快速幂模板题

    求f[n]=f[n-1]+f[n-2]+f[n-3] 我们知道 f[n] f[n-1] f[n-2]         f[n-1]  f[n-2]  f[n-3]         1    1    ...

  3. hdu 1575 求一个矩阵的k次幂 再求迹 (矩阵快速幂模板题)

    Problem DescriptionA为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和),现要求Tr(A^k)%9973. Input数据的第一行是一个T,表示有T组数据.每组数据的第一行有 ...

  4. POJ3070 斐波那契数列递推 矩阵快速幂模板题

    题目分析: 对于给出的n,求出斐波那契数列第n项的最后4为数,当n很大的时候,普通的递推会超时,这里介绍用矩阵快速幂解决当递推次数很大时的结果,这里矩阵已经给出,直接计算即可 #include< ...

  5. CodeForces 450B (矩阵快速幂模板题+负数取模)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=51919 题目大意:斐波那契数列推导.给定前f1,f2,推出指定第N ...

  6. hdu1575 Tr A 矩阵快速幂模板题

    hdu1575   TrA 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1575 都不需要构造矩阵,矩阵是题目给的,直接套模板,把对角线上的数相加就好 ...

  7. 51 Nod 1242 斐波那契数列的第N项(矩阵快速幂模板题)

    1242 斐波那契数列的第N项  基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 斐波那契数列的定义如下: F(0) = 0 F(1) = 1 F(n) ...

  8. POJ3070:Fibonacci(矩阵快速幂模板题)

    http://poj.org/problem?id=3070 #include <iostream> #include <string.h> #include <stdl ...

  9. HDU1757又是一道矩阵快速幂模板题

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1757 按照题目的要求构造矩阵 //Author: xiaowuga //矩阵: //a0 a1 a2 ...

随机推荐

  1. Python 特点

    优点 简单 -- Python 是一种代表简单主义思想的语言.阅读一个良好的 Python 程序就感觉像是在读英语一样,尽管这个英语的要求非常严格!Python 的这种伪代码本质是它最大的优点之一.它 ...

  2. java+大文件上传

    javaweb上传文件 上传文件的jsp中的部分 上传文件同样可以使用form表单向后端发请求,也可以使用 ajax向后端发请求 1.通过form表单向后端发送请求 <form id=" ...

  3. HGOI 20190830 题解

    Problem A 钥匙 有$n$个人和$m$个钥匙在数轴上,人的坐标为$a_i$,钥匙的坐标为$b_i$ 而门的坐标为$p$,要让所有人获得一把不同钥匙,并且到达门,最长时间最短是多少. 对于$10 ...

  4. Java web 公文流转系统 完成结果

    河北金力集团公文流转系统 1.项目需求: 河北金力集团是我省机械加工的龙头企业,主要从事矿山机械制造及各种机械零部件加工.企业有3个厂区,主厂区位于省高新技术开发区,3个分厂分别在保定.邢台和唐山.为 ...

  5. Codeforces Gym 101630J Travelling from Petersburg to Moscow (最短路)

    题目链接 http://codeforces.com/gym/101630/attachments 题解 zyb学长的题. 先枚举第\(k\)大的边权,设其边权为\(x\),然后把每条边边权减掉\(x ...

  6. exgcd 解同余方程ax=b(%n)

    ax=n(%b)  ->   ax+by=n 方程有解当且仅当 gcd(a,b) | n ( n是gcd(a,b)的倍数 ) exgcd解得 a*x0+b*y0=gcd(a,b) 记k=n/gc ...

  7. Centos-Redhat下远程桌面的方法 & Redhat改Centos源

    折腾了好几天才搞定,Redhat下远程桌面的方法,首先保证本身已经装了桌面,并且可以ssh访问 由于系统中自带python2环境,装了anaconda以及它带的python3环境,这个必须存在(前提) ...

  8. HNOI2012排队

    排列组合题(本文A(n,m)表示从n个元素里选m个的排列数). 首先,老师和女生有不能相邻的限制条件,应该用插空法.而且老师人数较少且固定,把老师和男生进行混合,对女生用插空. 我先来一手错误做法,n ...

  9. Mybatis内置的日志工厂提供日志功能

    Mybatis内置的日志工厂提供日志功能,具体的日志实现有以下几种工具: SLF4J Apache Commons Logging Log4j 2 Log4j JDK logging 具体选择哪个日志 ...

  10. C++之多继承与虚继承

    1. 多继承 1.1 多继承概念 一个类有多个直接基类的继承关系称为多继承 多继承声明语法 class 派生类名 : 访问控制 基类名1, 访问控制 基类名2, ... { 数据成员和成员函数声明 } ...