pandas.DataFrame.join

自己弄了很久,一看官网。感觉自己宛如智障。不要脸了,直接抄

DataFrame.join(otheron=Nonehow='left'lsuffix=''rsuffix=''sort=False)

Join columns with other DataFrame either on index or on a key column. Efficiently Join multiple DataFrame objects by index at once by passing a list.

Parameters:

other : DataFrame, Series with name field set, or list of DataFrame

Index should be similar to one of the columns in this one. If a Series is passed, its name attribute must be set, and that will be used as the column name in the resulting joined DataFrame

on : column name, tuple/list of column names, or array-like

Column(s) in the caller to join on the index in other, otherwise joins index-on-index. If multiples columns given, the passed DataFrame must have a MultiIndex. Can pass an array as the join key if not already contained in the calling DataFrame. Like an Excel VLOOKUP operation

how : {‘left’, ‘right’, ‘outer’, ‘inner’}, default: ‘left’

How to handle the operation of the two objects.

  • left: use calling frame’s index (or column if on is specified)

  • right: use other frame’s index

  • outer: form union of calling frame’s index (or column if on is

    specified) with other frame’s index

  • inner: form intersection of calling frame’s index (or column if

    on is specified) with other frame’s index

lsuffix : string

Suffix to use from left frame’s overlapping columns

rsuffix : string

Suffix to use from right frame’s overlapping columns

sort : boolean, default False

Order result DataFrame lexicographically by the join key. If False, preserves the index order of the calling (left) DataFrame

Returns:

joined : DataFrame

See also

DataFrame.merge
For column(s)-on-columns(s) operations

Notes

on, lsuffix, and rsuffix options are not supported when passing a list of DataFrame objects

Examples

>>> caller = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3', 'K4', 'K5'],
... 'A': ['A0', 'A1', 'A2', 'A3', 'A4', 'A5']})
>>> caller
A key
0 A0 K0
1 A1 K1
2 A2 K2
3 A3 K3
4 A4 K4
5 A5 K5
>>> other = pd.DataFrame({'key': ['K0', 'K1', 'K2'],
... 'B': ['B0', 'B1', 'B2']})
>>> other
B key
0 B0 K0
1 B1 K1
2 B2 K2

Join DataFrames using their indexes.==》join on indexes

>>> caller.join(other, lsuffix='_caller', rsuffix='_other')
>>>     A key_caller    B key_other
0 A0 K0 B0 K0
1 A1 K1 B1 K1
2 A2 K2 B2 K2
3 A3 K3 NaN NaN
4 A4 K4 NaN NaN
5 A5 K5 NaN NaN

If we want to join using the key columns, we need to set key to be the index in both caller and other. The joined DataFrame will have key as its index.

>>> caller.set_index('key').join(other.set_index('key'))
>>>      A    B
key
K0 A0 B0
K1 A1 B1
K2 A2 B2
K3 A3 NaN
K4 A4 NaN
K5 A5 NaN

Another option to join using the key columns is to use the on parameter. DataFrame.join always uses other’s index but we can use any column in the caller. This method preserves the original caller’s index in the result.

>>> caller.join(other.set_index('key'), on='key')
>>>     A key    B
0 A0 K0 B0
1 A1 K1 B1
2 A2 K2 B2
3 A3 K3 NaN
4 A4 K4 NaN
5 A5 K5 NaN

Pandas中DataFrame数据合并、连接(concat、merge、join)之join的更多相关文章

  1. Pandas中DataFrame数据合并、连接(concat、merge、join)之concat

    一.concat:沿着一条轴,将多个对象堆叠到一起 concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False, key ...

  2. Pandas中DataFrame数据合并、连接(concat、merge、join)之merge

    二.merge:通过键拼接列 类似于关系型数据库的连接方式,可以根据一个或多个键将不同的DatFrame连接起来. 该函数的典型应用场景是,针对同一个主键存在两张不同字段的表,根据主键整合到一张表里面 ...

  3. Python基础 | pandas中dataframe的整合与形变(merge & reshape)

    目录 行的union pd.concat df.append 列的join pd.concat pd.merge df.join 行列转置 pivot stack & unstack melt ...

  4. Spark与Pandas中DataFrame对比

      Pandas Spark 工作方式 单机single machine tool,没有并行机制parallelism不支持Hadoop,处理大量数据有瓶颈 分布式并行计算框架,内建并行机制paral ...

  5. Spark与Pandas中DataFrame对比(详细)

      Pandas Spark 工作方式 单机single machine tool,没有并行机制parallelism不支持Hadoop,处理大量数据有瓶颈 分布式并行计算框架,内建并行机制paral ...

  6. 将pandas的DataFrame数据写入MySQL数据库 + sqlalchemy

    将pandas的DataFrame数据写入MySQL数据库 + sqlalchemy import pandas as pd from sqlalchemy import create_engine ...

  7. 排序合并连接(sort merge join)的原理

    排序合并连接(sort merge join)的原理 排序合并连接(sort merge join)的原理     排序合并连接(sort merge join)       访问次数:两张表都只会访 ...

  8. Python3 Pandas的DataFrame数据的增、删、改、查

    Python3 Pandas的DataFrame数据的增.删.改.查 一.DataFrame数据准备 增.删.改.查的方法有很多很多种,这里只展示出常用的几种. 参数inplace默认为False,只 ...

  9. Pandas中DataFrame修改列名

    Pandas中DataFrame修改列名:使用 rename df = pd.read_csv('I:/Papers/consumer/codeandpaper/TmallData/result01- ...

随机推荐

  1. C语言I—2019秋作业第一周作业

    1.你对软件工程专业或者计算机科学与技术专业了解是怎样? 软件工程专业是一门研究用工程化方法构建和维护有效的.实用的和高质量的软件的学科.它涉及到程序设计语言,数据库,软件开发工具,系统平台,标准,设 ...

  2. Vue学习之vue-cli脚手架下载安装及配置

    Vue学习之vue-cli脚手架下载安装及配置:https://www.cnblogs.com/clschao/articles/10650862.html 1. 先下载node.js,下载地址:ht ...

  3. spring-boot 使用jdk6(三)

    环境 jdk 6 tomcat 7.0.59 sts 4.4.2 maven 3.2.5 背景 由于环境限制,还在使用 JDK6,所以需要将 spring boot 进行配置,支持JDK6. 以下所有 ...

  4. LINK : fatal error LNK1104: cannot open file的解决方法

    结果是编译时通过了,但连接(F7)时却显示: LINK : fatal error LNK1104: cannot open file“Debug/1.exe” ============== 上一次运 ...

  5. python-day6(正式学习)

    流程控制之while循环 语法 循环就是一个重复的过程,人需要重复做某项工作,那么计算机也一样.当ATM验证失败,那么计算机就会让我们再输入一次密码.这时候我们说的循环就是while循环,while循 ...

  6. T100 —— 凭证打印时排序

    capr110_g01,按扣账日期打印排序: 在adzp188——“字段”中加入pmds001的话,产生的代码的变量是:pmds_t_pmds001 :当在“群组”—“印出排序” 再添加pmds001 ...

  7. go get 安装一个特定版本的包失败解决方法

    场景描述 go get 下载第三方包golang gin框架时,会去下载gopkg.in/go-playground/validator.v8包以及gopkg.in/yaml.v2包,gopkg.in ...

  8. Java枚举相关知识

    JAVA枚举 很多编程语言都提供了枚举的概念,但是java直到1.5之后才提出了枚举的概念,出现比这个语言本身晚10年. 主要作用是用于定义有限个数对象的一种结构(多例设计),枚举就属于多例设计并且其 ...

  9. github常用搜索技巧

    1.在项目名称,readme文件和描述中包含关键字seckill的项目seckill in:name,readme,description 2.fork大于500,stars大于500springbo ...

  10. bash 中的 :=、=、:-、-、=?、?、:+、+

    bash 中的 :=.=.:-.-.=?.?.:+.+ 来源 https://www.cnblogs.com/fhefh/archive/2011/04/22/2024750.html 变量替换和变量 ...