pandas.DataFrame.join

自己弄了很久,一看官网。感觉自己宛如智障。不要脸了,直接抄

DataFrame.join(otheron=Nonehow='left'lsuffix=''rsuffix=''sort=False)

Join columns with other DataFrame either on index or on a key column. Efficiently Join multiple DataFrame objects by index at once by passing a list.

Parameters:

other : DataFrame, Series with name field set, or list of DataFrame

Index should be similar to one of the columns in this one. If a Series is passed, its name attribute must be set, and that will be used as the column name in the resulting joined DataFrame

on : column name, tuple/list of column names, or array-like

Column(s) in the caller to join on the index in other, otherwise joins index-on-index. If multiples columns given, the passed DataFrame must have a MultiIndex. Can pass an array as the join key if not already contained in the calling DataFrame. Like an Excel VLOOKUP operation

how : {‘left’, ‘right’, ‘outer’, ‘inner’}, default: ‘left’

How to handle the operation of the two objects.

  • left: use calling frame’s index (or column if on is specified)

  • right: use other frame’s index

  • outer: form union of calling frame’s index (or column if on is

    specified) with other frame’s index

  • inner: form intersection of calling frame’s index (or column if

    on is specified) with other frame’s index

lsuffix : string

Suffix to use from left frame’s overlapping columns

rsuffix : string

Suffix to use from right frame’s overlapping columns

sort : boolean, default False

Order result DataFrame lexicographically by the join key. If False, preserves the index order of the calling (left) DataFrame

Returns:

joined : DataFrame

See also

DataFrame.merge
For column(s)-on-columns(s) operations

Notes

on, lsuffix, and rsuffix options are not supported when passing a list of DataFrame objects

Examples

>>> caller = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3', 'K4', 'K5'],
... 'A': ['A0', 'A1', 'A2', 'A3', 'A4', 'A5']})
>>> caller
A key
0 A0 K0
1 A1 K1
2 A2 K2
3 A3 K3
4 A4 K4
5 A5 K5
>>> other = pd.DataFrame({'key': ['K0', 'K1', 'K2'],
... 'B': ['B0', 'B1', 'B2']})
>>> other
B key
0 B0 K0
1 B1 K1
2 B2 K2

Join DataFrames using their indexes.==》join on indexes

>>> caller.join(other, lsuffix='_caller', rsuffix='_other')
>>>     A key_caller    B key_other
0 A0 K0 B0 K0
1 A1 K1 B1 K1
2 A2 K2 B2 K2
3 A3 K3 NaN NaN
4 A4 K4 NaN NaN
5 A5 K5 NaN NaN

If we want to join using the key columns, we need to set key to be the index in both caller and other. The joined DataFrame will have key as its index.

>>> caller.set_index('key').join(other.set_index('key'))
>>>      A    B
key
K0 A0 B0
K1 A1 B1
K2 A2 B2
K3 A3 NaN
K4 A4 NaN
K5 A5 NaN

Another option to join using the key columns is to use the on parameter. DataFrame.join always uses other’s index but we can use any column in the caller. This method preserves the original caller’s index in the result.

>>> caller.join(other.set_index('key'), on='key')
>>>     A key    B
0 A0 K0 B0
1 A1 K1 B1
2 A2 K2 B2
3 A3 K3 NaN
4 A4 K4 NaN
5 A5 K5 NaN

Pandas中DataFrame数据合并、连接(concat、merge、join)之join的更多相关文章

  1. Pandas中DataFrame数据合并、连接(concat、merge、join)之concat

    一.concat:沿着一条轴,将多个对象堆叠到一起 concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False, key ...

  2. Pandas中DataFrame数据合并、连接(concat、merge、join)之merge

    二.merge:通过键拼接列 类似于关系型数据库的连接方式,可以根据一个或多个键将不同的DatFrame连接起来. 该函数的典型应用场景是,针对同一个主键存在两张不同字段的表,根据主键整合到一张表里面 ...

  3. Python基础 | pandas中dataframe的整合与形变(merge & reshape)

    目录 行的union pd.concat df.append 列的join pd.concat pd.merge df.join 行列转置 pivot stack & unstack melt ...

  4. Spark与Pandas中DataFrame对比

      Pandas Spark 工作方式 单机single machine tool,没有并行机制parallelism不支持Hadoop,处理大量数据有瓶颈 分布式并行计算框架,内建并行机制paral ...

  5. Spark与Pandas中DataFrame对比(详细)

      Pandas Spark 工作方式 单机single machine tool,没有并行机制parallelism不支持Hadoop,处理大量数据有瓶颈 分布式并行计算框架,内建并行机制paral ...

  6. 将pandas的DataFrame数据写入MySQL数据库 + sqlalchemy

    将pandas的DataFrame数据写入MySQL数据库 + sqlalchemy import pandas as pd from sqlalchemy import create_engine ...

  7. 排序合并连接(sort merge join)的原理

    排序合并连接(sort merge join)的原理 排序合并连接(sort merge join)的原理     排序合并连接(sort merge join)       访问次数:两张表都只会访 ...

  8. Python3 Pandas的DataFrame数据的增、删、改、查

    Python3 Pandas的DataFrame数据的增.删.改.查 一.DataFrame数据准备 增.删.改.查的方法有很多很多种,这里只展示出常用的几种. 参数inplace默认为False,只 ...

  9. Pandas中DataFrame修改列名

    Pandas中DataFrame修改列名:使用 rename df = pd.read_csv('I:/Papers/consumer/codeandpaper/TmallData/result01- ...

随机推荐

  1. Django2.2 数据库的模块model学习笔记

    一.前言 为什么选用Django2.2,因为从2019年下半年起Django2.2逐渐成为长期支持版本,官网也有数据,所以当然选用维护时间长的版本 二.models的建立 Django的models也 ...

  2. Django 框架学习 ---- 安装

    这里引用了源码方式安装: 1.git clone https://github.com/django/django.git 2.cd django/ 3.python setup.py install ...

  3. 理解twisted中的reactor和deferred(二)

    Deferred可以添加多个回调函数,每个回调函数的结果作为下一个回调函数的参数 代码实例(可在pycharm中运行,摘自 https://twistedmatrix.com/documents/cu ...

  4. MySql查看时间

    select now();命令查看MySql时间(包括时分秒) select current_date();命令查看MySql时间(不包括时分秒) 在代码中,创建时间.修改时间字段的jdbc语句也可以 ...

  5. Springboot导出Excel并下载

    引入相关依赖 <!--数据导出excel--> <!-- https://mvnrepository.com/artifact/org.apache.poi/poi --> & ...

  6. Qt 4.5发布(最大的变动是换用LGPL许可证,移植进了苹果的Cocoa框架。之前的Qt只支持Carbon框架,现在的Qt 4.5两者都支持。单一源代码创建出支持32位或64位字节的Intel或PowerPC Mac二进制文件)

            Nokia的开源Qt开发工具正式发布了4.5版.如前所述,Qt 4.5最大的变动是换用LGPL许可证,目前采用的三个许可证分别为LGPL/GPL和商业许可证.           新版 ...

  7. Java 时间不一致

    1.new Date() 得到的时间?和系统相差 相差8个小时 2.eclipse控制台打印的时间与系统相差 相差8个小时 3.log4j日志的时间与与系统相差 相差8个小时 上述问题其实是同一个问题 ...

  8. 【原创】大叔问题定位分享(34)Spring的RestTemplate请求json数据后内容被修改

    先看代码 org.springframework.web.client.RestTemplate public RestTemplate() { this.messageConverters = ne ...

  9. JS基础_关系运算符

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  10. vue之scoped穿透

    vue之scoped穿透 问题:在页面中,需要了第三方插件的样式,又不想取消scoped,防止造成样式污染 方法:>>> 代码: #tab >>> .ivu-tab ...