好像卡常,第10个点一直TLE~

Code:

#include <bits/stdc++.h>
#define ll long long
#define ull unsigned long long
#define setIO(s) freopen(s".in","r",stdin)
using namespace std;
set<ll>S;
map<ll,int>pp;
map<ll,int>::iterator it;
int Array[20]={2,3,5,7,11,13,17,19};
ll mult(ll x,ll y,ll mod)
{
ll tmp=(long double)x/mod*y;
return ((ull)x*y-(ull)tmp*mod+(ull)mod)%mod;
}
ll qpow(ll base,ll k,ll mod)
{
ll tmp=1;
for(;k;k>>=1,base=mult(base,base,mod))
if(k&1) tmp=mult(tmp,base,mod);
return tmp;
}
int isprime(ll x)
{
if(x<=2) return 1;
int i,j,k;
ll cur,a,pre;
for(k=0,cur=x-1;cur%2==0;cur/=2) ++k;
for(i=0;i<8;++i)
{
if(x==Array[i]) return 1;
a=pre=qpow(Array[i],cur,x);
for(j=1;j<=k;++j)
{
a=mult(a,a,x);
if(a==1&&pre!=1&&pre!=x-1) return 0;
pre=a;
}
if(a!=1) return 0;
}
return 1;
}
ll F(ll x,ll c,ll mod)
{
return (mult(x,x,mod)+c)%mod;
}
ll pollard_rho(ll x)
{
int k,step;
ll s=0,t=0,c=rand()%(x-1)+1,val=1,d;
for(k=1;;k<<=1,s=t,val=1)
{
for(step=1;step<=k;++step)
{
t=F(t,c,x);
val=mult(val,abs(s-t),x);
if(step%127==0)
{
d=__gcd(val,x);
if(d>1) return d;
}
}
d=__gcd(val,x);
if(d>1) return d;
}
}
void solve(ll x)
{
if(isprime(x))
{
S.insert(x);
return;
}
ll p=x;
for(;p>=x;) p=pollard_rho(x);
for(;x%p==0;) x/=p;
solve(x),solve(p);
}
set<ll>::iterator l;
int main()
{
int i,j,n;
// setIO("input");
srand((unsigned)time(NULL));
scanf("%d",&n);
for(i=1;i<=n;++i)
{
ll a;
S.clear(),scanf("%lld",&a),solve(a);
for(l=S.begin();l!=S.end();l++)
{
if((*l)==1) continue;
for(;a%(*l)==0;)
{
a/=(*l), pp[(*l)]++;
}
}
}
ll re=1;
for(it=pp.begin();it!=pp.end();it++)
re=mult(re,(it->second+1),998244353);
printf("%I64d\n",re);
return 0;
}

  

CF1033D Divisors Pollard-rho的更多相关文章

  1. POJ 1811 Prime Test (Pollard rho 大整数分解)

    题意:给出一个N,若N为素数,输出Prime.若为合数,输出最小的素因子.思路:Pollard rho大整数分解,模板题 #include <iostream> #include < ...

  2. 整数(质因子)分解(Pollard rho大整数分解)

    整数分解,又称质因子分解.在数学中,整数分解问题是指:给出一个正整数,将其写成几个素数的乘积的形式. (每个合数都可以写成几个质数相乘的形式,这几个质数就都叫做这个合数的质因数.) .试除法(适用于范 ...

  3. Pollard Rho因子分解算法

    有一类问题,要求我们将一个正整数x,分解为两个非平凡因子(平凡因子为1与x)的乘积x=ab. 显然我们需要先检测x是否为素数(如果是素数将无解),可以使用Miller-Rabin算法来进行测试. Po ...

  4. Pollard rho算法+Miller Rabin算法 BZOJ 3668 Rabin-Miller算法

    BZOJ 3667: Rabin-Miller算法 Time Limit: 60 Sec  Memory Limit: 512 MBSubmit: 1044  Solved: 322[Submit][ ...

  5. 初学Pollard Rho算法

    前言 \(Pollard\ Rho\)是一个著名的大数质因数分解算法,它的实现基于一个神奇的算法:\(MillerRabin\)素数测试(关于\(MillerRabin\),可以参考这篇博客:初学Mi ...

  6. 【Luogu】P4358密钥破解(Pollard Rho)

    题目链接 容易发现如果我们求出p和q这题就差不多快变成一个sb题了. 于是我们就用Pollard Rho算法进行大数分解. 至于这个算法的原理,emmm 其实也不是很清楚啦 #include<c ...

  7. Miller-Rabin 素性测试 与 Pollard Rho 大整数分解

    \(\\\) Miller-Rabin 素性测试 考虑如何检验一个数字是否为素数. 经典的试除法复杂度 \(O(\sqrt N)\) 适用于询问 \(N\le 10^{16}\) 的时候. 如果我们要 ...

  8. BZOJ_4802_欧拉函数_MR+pollard rho+欧拉函数

    BZOJ_4802_欧拉函数_MR+pollard rho+欧拉函数 Description 已知N,求phi(N) Input 正整数N.N<=10^18 Output 输出phi(N) Sa ...

  9. BZOJ_3667_Rabin-Miller算法_Mille_Rabin+Pollard rho

    BZOJ_3667_Rabin-Miller算法_Mille_Rabin+Pollard rho Description Input 第一行:CAS,代表数据组数(不大于350),以下CAS行,每行一 ...

  10. 浅谈 Miller-Robbin 与 Pollard Rho

    前言 $Miller-Robbin$ 与 $Pollard Rho$ 虽然都是随机算法,不过用起来是真的爽. $Miller Rabin$ 算法是一种高效的质数判断方法.虽然是一种不确定的质数判断法, ...

随机推荐

  1. Keepalive+双主

    一.建立3台服务器之间ssh互信在mydb1,mydb2,mydb3服务器上分别执行:ssh-keygen -t rsassh-copy-id -i .ssh/id_rsa.pub root@192. ...

  2. JS 装饰器,一篇就够

    更多文章,请在Github blog查看 在 ES6 中增加了对类对象的相关定义和操作(比如 class 和 extends ),这就使得我们在多个不同类之间共享或者扩展一些方法或者行为的时候,变得并 ...

  3. BZOJ2456-mode题解--一道有趣题

    题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=2456 瞎扯 这是今天考的模拟赛T2交互题的一个30分部分分,老师在讲题时提到了这题.考 ...

  4. 学习笔记--三分法&秦九韶算法

    前言 其实也没什么好说的吧,三分法就是用来求一个单调函数的最值和满足最大值的\(x\),秦九韶算法就是在\(O(N)\)时间内求一个多项式值 怎么用 三分法使用--看这篇:https://www.cn ...

  5. Laravel where条件拼接,数组拼接where条件

    问题描述:laravel where 条件拼接 Like出错,搜索不到要搜索的内容. 问题代码: // 作物 $crop_class_id = $request->crop_class_id; ...

  6. Centos7:ActiveMQ安装,配置及使用

    解压缩ActiveMQ 的压缩包 使用 命令在bin目录下 ./activemq stat//开启 ./activemq stop//关闭 ./activemq status//状态 进入管理后台 U ...

  7. Js中去除数组中重复元素的6种方法

    方法一: Array.prototype.method1 = function(){ var arr=[]; //定义一个临时数组 for(var i = 0; i < this.length; ...

  8. docker容器生态技术链

    图片来源:https://blog.51cto.com/liuleis/2067116 说明:学习Docker容器技术,先纵向了解大致内容架构,再横向逐一分解涉及的各项技术内容,对容器所涉及的技术体系 ...

  9. Phoenix批量提交优化,官网的demo

    1 Phoenix的批量insert官网代码,最佳实践 try (Connection conn = DriverManager.getConnection(url)) { conn.setAutoC ...

  10. [转] - Linux中使用alternatives切换Jdk版本

    1. 准备JDK包,分别是1.7和1.8,jdk-7u79-linux-x64.tar.gz和jdk-8u161-linux-x64.gz: 2. 解压,解压后的目录结构如图所示: JDK1.7: J ...