Educational Codeforces Round 37-F.SUM and REPLACE (线段树,线性筛,收敛函数)
F. SUM and REPLACE
time limit per test2 seconds
memory limit per test256 megabytes
inputstandard input
outputstandard output
Let D(x) be the number of positive divisors of a positive integer x. For example, D(2) = 2 (2 is divisible by 1 and 2), D(6) = 4 (6 is divisible by 1, 2, 3 and 6).
You are given an array a of n integers. You have to process two types of queries:
REPLACE l r — for every replace ai with D(ai);
SUM l r — calculate .
Print the answer for each SUM query.
Input
The first line contains two integers n and m (1 ≤ n, m ≤ 3·105) — the number of elements in the array and the number of queries to process, respectively.
The second line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 106) — the elements of the array.
Then m lines follow, each containing 3 integers ti, li, ri denoting i-th query. If ti = 1, then i-th query is REPLACE li ri, otherwise it's SUM li ri (1 ≤ ti ≤ 2, 1 ≤ li ≤ ri ≤ n).
There is at least one SUM query.
Output
For each SUM query print the answer to it.
Example
inputCopy
7 6
6 4 1 10 3 2 4
2 1 7
2 4 5
1 3 5
2 4 4
1 5 7
2 1 7
outputCopy
30
13
4
22
https://codeforces.com/contest/920/problem/F
题意:
给你一个含有n个数的数组,和m个操作
操作1:将l~r中每一个数\(a[i]\)变成 \(d(a[i])\)
其中$ d(x)$ 是约数个数函数。
操作2: 求l~r的a[i] 的sum和。
思路:
$ d(x)$ 约数个数函数可以利用线性筛预处理处理。
又因为 \(d(2)=2\) 和 \(d(1)=1\) 操作1对a[i]等于1或者2没有影响。
那么我们可以对一个区间中全都是1或者2不更新操作。
同时 \(d(x)\) 是收敛函数, 在1e6 的范围内,最多不超过5次改变就会收敛到1或2.
所以更新操作可以暴力解决,
同时用线段树维护即可。
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define sz(a) int(a.size())
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
#define du3(a,b,c) scanf("%d %d %d",&(a),&(b),&(c))
#define du2(a,b) scanf("%d %d",&(a),&(b))
#define du1(a) scanf("%d",&(a));
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
ll powmod(ll a, ll b, ll MOD) {a %= MOD; if (a == 0ll) {return 0ll;} ll ans = 1; while (b) {if (b & 1) {ans = ans * a % MOD;} a = a * a % MOD; b >>= 1;} return ans;}
void Pv(const vector<int> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%d", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}}
void Pvl(const vector<ll> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%lld", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}}
inline void getInt(int *p);
const int maxn = 1000010;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
// d(n)表示n的约数个数和
// prime[i]表示第i个质数
//num[i]表示i的最小质因子出现次数
int sshu[maxn];
int N = maxn;
int num[maxn];
int d[maxn];
bool no[maxn];
int tot;
void prepare()
{
d[1] = 1; num[1] = 1;
for (int i = 2; i < N; i++) {
if (!no[i]) {
sshu[++tot] = i;
d[i] = 2; num[i] = 1;
}
for (int j = 1; j <= tot && sshu[j]*i < N; j++) {
int v = sshu[j] * i;
no[v] = 1;
if (i % sshu[j] == 0) {
num[v] = num[i] + 1;
d[v] = d[i] / num[v] * (num[v] + 1);
break;
}
d[v] = d[i] << 1; num[v] = 1;
}
}
//for (int i=1;i<=10;i++) printf("%d\n",d[i]);
}
int a[maxn];
struct node {
int l, r;
int laze;
bool isall;
ll num;
} segment_tree[maxn << 2];
void pushup(int rt)
{
segment_tree[rt].num = segment_tree[rt << 1].num + segment_tree[rt << 1 | 1].num;
segment_tree[rt].isall = segment_tree[rt << 1].isall & segment_tree[rt << 1 | 1].isall;
}
void build(int rt, int l, int r)
{
segment_tree[rt].l = l;
segment_tree[rt].r = r;
if (l == r) {
segment_tree[rt].num =a[l];
if (segment_tree[rt].num == 1 || segment_tree[rt].num == 2) {
segment_tree[rt].isall = 1;
}
return ;
}
int mid = (l + r) >> 1;
build(rt << 1, l, mid);
build(rt << 1 | 1, mid + 1, r);
pushup(rt);
}
void update(int rt, int l, int r)
{
if (l <= segment_tree[rt].l && r >= segment_tree[rt].r && segment_tree[rt].isall) {
return;
}
if (segment_tree[rt].l == segment_tree[rt].r) {
segment_tree[rt].num = d[segment_tree[rt].num];
if (segment_tree[rt].num == 1 || segment_tree[rt].num == 2) {
segment_tree[rt].isall = 1;
}
return ;
} else {
int mid = (segment_tree[rt].l + segment_tree[rt].r) >> 1;
if (mid >= l) {
update(rt << 1, l, r);
}
if (mid < r) {
update(rt << 1 | 1, l, r);
}
pushup(rt);
}
}
ll query(int rt, int l, int r)
{
if (segment_tree[rt].l >= l && segment_tree[rt].r <= r) {
ll res = 0ll;
res += segment_tree[rt].num;
return res;
}
int mid = (segment_tree[rt].l + segment_tree[rt].r) >> 1;
ll res = 0ll;
if (mid >= l) {
res += query(rt << 1, l, r);
}
if (mid < r) {
res += query(rt << 1 | 1, l, r);
}
return res;
}
int main()
{
//freopen("D:\\code\\text\\input.txt","r",stdin);
//freopen("D:\\code\\text\\output.txt","w",stdout);
prepare();
int n, m;
du2(n, m);
repd(i, 1, n) {
du1(a[i]);
}
build(1, 1, n);
repd(i, 1, m) {
int op; int l, r;
du3(op, l, r);
if (op == 1) {
update(1, l, r);
} else {
printf("%lld\n", query(1, l, r));
}
}
return 0;
}
inline void getInt(int *p)
{
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
} else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}
Educational Codeforces Round 37-F.SUM and REPLACE (线段树,线性筛,收敛函数)的更多相关文章
- 【Educational Codeforces Round 37】F. SUM and REPLACE 线段树+线性筛
题意 给定序列$a_n$,每次将$[L,R]$区间内的数$a_i$替换为$d(a_i)$,或者询问区间和 这题和区间开方有相同的操作 对于$a_i \in (1,10^6)$,$10$次$d(a_i) ...
- Educational Codeforces Round 23 F. MEX Queries 离散化+线段树
F. MEX Queries time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...
- 【Educational Codeforces Round 37 F】SUM and REPLACE
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 那个D函数它的下降速度是很快的. 也就是说到最后他会很快的变成2或者1 而D(2)==2,D(1)=1 也就是说,几次操作过后很多数 ...
- Educational Codeforces Round 64 (Rated for Div. 2) (线段树二分)
题目:http://codeforces.com/contest/1156/problem/E 题意:给你1-n n个数,然后求有多少个区间[l,r] 满足 a[l]+a[r]=max([l, ...
- Educational Codeforces Round 37
Educational Codeforces Round 37 这场有点炸,题目比较水,但只做了3题QAQ.还是实力不够啊! 写下题解算了--(写的比较粗糙,细节或者bug可以私聊2333) A. W ...
- Educational Codeforces Round 37 (Rated for Div. 2)C. Swap Adjacent Elements (思维,前缀和)
Educational Codeforces Round 37 (Rated for Div. 2)C. Swap Adjacent Elements time limit per test 1 se ...
- Educational Codeforces Round 40 F. Runner's Problem
Educational Codeforces Round 40 F. Runner's Problem 题意: 给一个$ 3 * m \(的矩阵,问从\)(2,1)$ 出发 走到 \((2,m)\) ...
- Educational Codeforces Round 37 A B C D E F
A. water the garden Code #include <bits/stdc++.h> #define maxn 210 using namespace std; typede ...
- codeforces 920 EFG 题解合集 ( Educational Codeforces Round 37 )
E. Connected Components? time limit per test 2 seconds memory limit per test 256 megabytes input sta ...
- [Codeforces]Educational Codeforces Round 37 (Rated for Div. 2)
Water The Garden #pragma comment(linker, "/STACK:102400000,102400000") #include<stdio.h ...
随机推荐
- leetcode907 Sum of Subarray Minimums
思路: 对于每个数字A[i],使用单调栈找到A[i]作为最小值的所有区间数量,相乘并累加结果.时间复杂度O(n). 实现: class Solution { public: int sumSubarr ...
- CF1190D Tokitsukaze and Strange Rectangle
思路: 线段树 + 扫描线. 实现: #include <bits/stdc++.h> using namespace std; typedef long long ll; ; int n ...
- 【计算机视觉】opencv读取多个摄像头
[计算机视觉]opencv读取多个摄像头 标签(空格分隔): [图像处理] 说明:今天蹭了机器视觉课程,讲到了stereopsis,立体视觉,讲到了关于通过多个摄像头获取object的depth信息的 ...
- Django之会话机制cookie、session使用
login视图函数: def login(request): if request.method == 'POST': username = request.POST.get('username') ...
- 菜鸟系列Fabric源码学习—创建通道
通道创建源码解析 1. 与通道创建相关配置及操作命令 主要是configtx.yaml.通过应用通道的profile生成创建通道的配置文件. TwoOrgsChannel: Consortium: S ...
- Jmeter对Websocket进行接口压力测试
压力测试是给软件不断加压,强制其在极限的情况下运行,观察它可以运行到何种程度,从而发现性能缺陷,是通过搭建与实际环境相似的测试环境,通过测试程序在同一时间内或某一段时间内,向系统发送预期数量的交易请求 ...
- 使用jbc查询数据封装成对象的工具类
适用于获取Connection对象的util package com.briup.myDataSource; import java.io.FileReader; import java.io.Inp ...
- 【AtCoder】ARC067
ARC067 C - Factors of Factorial 这个直接套公式就是,先求出来每个质因数的指数幂,然后约数个数就是 \((1 + e_{1})(1 + e_{2})(1 + e_{3}) ...
- 洛谷P2178 [NOI2015]品酒大会 后缀数组+单调栈
P2178 [NOI2015]品酒大会 题目链接 https://www.luogu.org/problemnew/show/P2178 题目描述 一年一度的"幻影阁夏日品酒大会" ...
- QT 打包exe
QT打包主要方法: 1.把无措的代码进行Release编译 2.在运行完后,找到运行后生成的目录,以下是我的文件,名为result,运行类型有两种,一种是Debug,另一种是Release,我们需要的 ...