Educational Codeforces Round 37-F.SUM and REPLACE (线段树,线性筛,收敛函数)
F. SUM and REPLACE
time limit per test2 seconds
memory limit per test256 megabytes
inputstandard input
outputstandard output
Let D(x) be the number of positive divisors of a positive integer x. For example, D(2) = 2 (2 is divisible by 1 and 2), D(6) = 4 (6 is divisible by 1, 2, 3 and 6).
You are given an array a of n integers. You have to process two types of queries:
REPLACE l r — for every replace ai with D(ai);
SUM l r — calculate .
Print the answer for each SUM query.
Input
The first line contains two integers n and m (1 ≤ n, m ≤ 3·105) — the number of elements in the array and the number of queries to process, respectively.
The second line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 106) — the elements of the array.
Then m lines follow, each containing 3 integers ti, li, ri denoting i-th query. If ti = 1, then i-th query is REPLACE li ri, otherwise it's SUM li ri (1 ≤ ti ≤ 2, 1 ≤ li ≤ ri ≤ n).
There is at least one SUM query.
Output
For each SUM query print the answer to it.
Example
inputCopy
7 6
6 4 1 10 3 2 4
2 1 7
2 4 5
1 3 5
2 4 4
1 5 7
2 1 7
outputCopy
30
13
4
22
https://codeforces.com/contest/920/problem/F
题意:
给你一个含有n个数的数组,和m个操作
操作1:将l~r中每一个数\(a[i]\)变成 \(d(a[i])\)
其中$ d(x)$ 是约数个数函数。
操作2: 求l~r的a[i] 的sum和。
思路:
$ d(x)$ 约数个数函数可以利用线性筛预处理处理。
又因为 \(d(2)=2\) 和 \(d(1)=1\) 操作1对a[i]等于1或者2没有影响。
那么我们可以对一个区间中全都是1或者2不更新操作。
同时 \(d(x)\) 是收敛函数, 在1e6 的范围内,最多不超过5次改变就会收敛到1或2.
所以更新操作可以暴力解决,
同时用线段树维护即可。
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define sz(a) int(a.size())
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
#define du3(a,b,c) scanf("%d %d %d",&(a),&(b),&(c))
#define du2(a,b) scanf("%d %d",&(a),&(b))
#define du1(a) scanf("%d",&(a));
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
ll powmod(ll a, ll b, ll MOD) {a %= MOD; if (a == 0ll) {return 0ll;} ll ans = 1; while (b) {if (b & 1) {ans = ans * a % MOD;} a = a * a % MOD; b >>= 1;} return ans;}
void Pv(const vector<int> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%d", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}}
void Pvl(const vector<ll> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%lld", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}}
inline void getInt(int *p);
const int maxn = 1000010;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
// d(n)表示n的约数个数和
// prime[i]表示第i个质数
//num[i]表示i的最小质因子出现次数
int sshu[maxn];
int N = maxn;
int num[maxn];
int d[maxn];
bool no[maxn];
int tot;
void prepare()
{
d[1] = 1; num[1] = 1;
for (int i = 2; i < N; i++) {
if (!no[i]) {
sshu[++tot] = i;
d[i] = 2; num[i] = 1;
}
for (int j = 1; j <= tot && sshu[j]*i < N; j++) {
int v = sshu[j] * i;
no[v] = 1;
if (i % sshu[j] == 0) {
num[v] = num[i] + 1;
d[v] = d[i] / num[v] * (num[v] + 1);
break;
}
d[v] = d[i] << 1; num[v] = 1;
}
}
//for (int i=1;i<=10;i++) printf("%d\n",d[i]);
}
int a[maxn];
struct node {
int l, r;
int laze;
bool isall;
ll num;
} segment_tree[maxn << 2];
void pushup(int rt)
{
segment_tree[rt].num = segment_tree[rt << 1].num + segment_tree[rt << 1 | 1].num;
segment_tree[rt].isall = segment_tree[rt << 1].isall & segment_tree[rt << 1 | 1].isall;
}
void build(int rt, int l, int r)
{
segment_tree[rt].l = l;
segment_tree[rt].r = r;
if (l == r) {
segment_tree[rt].num =a[l];
if (segment_tree[rt].num == 1 || segment_tree[rt].num == 2) {
segment_tree[rt].isall = 1;
}
return ;
}
int mid = (l + r) >> 1;
build(rt << 1, l, mid);
build(rt << 1 | 1, mid + 1, r);
pushup(rt);
}
void update(int rt, int l, int r)
{
if (l <= segment_tree[rt].l && r >= segment_tree[rt].r && segment_tree[rt].isall) {
return;
}
if (segment_tree[rt].l == segment_tree[rt].r) {
segment_tree[rt].num = d[segment_tree[rt].num];
if (segment_tree[rt].num == 1 || segment_tree[rt].num == 2) {
segment_tree[rt].isall = 1;
}
return ;
} else {
int mid = (segment_tree[rt].l + segment_tree[rt].r) >> 1;
if (mid >= l) {
update(rt << 1, l, r);
}
if (mid < r) {
update(rt << 1 | 1, l, r);
}
pushup(rt);
}
}
ll query(int rt, int l, int r)
{
if (segment_tree[rt].l >= l && segment_tree[rt].r <= r) {
ll res = 0ll;
res += segment_tree[rt].num;
return res;
}
int mid = (segment_tree[rt].l + segment_tree[rt].r) >> 1;
ll res = 0ll;
if (mid >= l) {
res += query(rt << 1, l, r);
}
if (mid < r) {
res += query(rt << 1 | 1, l, r);
}
return res;
}
int main()
{
//freopen("D:\\code\\text\\input.txt","r",stdin);
//freopen("D:\\code\\text\\output.txt","w",stdout);
prepare();
int n, m;
du2(n, m);
repd(i, 1, n) {
du1(a[i]);
}
build(1, 1, n);
repd(i, 1, m) {
int op; int l, r;
du3(op, l, r);
if (op == 1) {
update(1, l, r);
} else {
printf("%lld\n", query(1, l, r));
}
}
return 0;
}
inline void getInt(int *p)
{
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
} else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}
Educational Codeforces Round 37-F.SUM and REPLACE (线段树,线性筛,收敛函数)的更多相关文章
- 【Educational Codeforces Round 37】F. SUM and REPLACE 线段树+线性筛
题意 给定序列$a_n$,每次将$[L,R]$区间内的数$a_i$替换为$d(a_i)$,或者询问区间和 这题和区间开方有相同的操作 对于$a_i \in (1,10^6)$,$10$次$d(a_i) ...
- Educational Codeforces Round 23 F. MEX Queries 离散化+线段树
F. MEX Queries time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...
- 【Educational Codeforces Round 37 F】SUM and REPLACE
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 那个D函数它的下降速度是很快的. 也就是说到最后他会很快的变成2或者1 而D(2)==2,D(1)=1 也就是说,几次操作过后很多数 ...
- Educational Codeforces Round 64 (Rated for Div. 2) (线段树二分)
题目:http://codeforces.com/contest/1156/problem/E 题意:给你1-n n个数,然后求有多少个区间[l,r] 满足 a[l]+a[r]=max([l, ...
- Educational Codeforces Round 37
Educational Codeforces Round 37 这场有点炸,题目比较水,但只做了3题QAQ.还是实力不够啊! 写下题解算了--(写的比较粗糙,细节或者bug可以私聊2333) A. W ...
- Educational Codeforces Round 37 (Rated for Div. 2)C. Swap Adjacent Elements (思维,前缀和)
Educational Codeforces Round 37 (Rated for Div. 2)C. Swap Adjacent Elements time limit per test 1 se ...
- Educational Codeforces Round 40 F. Runner's Problem
Educational Codeforces Round 40 F. Runner's Problem 题意: 给一个$ 3 * m \(的矩阵,问从\)(2,1)$ 出发 走到 \((2,m)\) ...
- Educational Codeforces Round 37 A B C D E F
A. water the garden Code #include <bits/stdc++.h> #define maxn 210 using namespace std; typede ...
- codeforces 920 EFG 题解合集 ( Educational Codeforces Round 37 )
E. Connected Components? time limit per test 2 seconds memory limit per test 256 megabytes input sta ...
- [Codeforces]Educational Codeforces Round 37 (Rated for Div. 2)
Water The Garden #pragma comment(linker, "/STACK:102400000,102400000") #include<stdio.h ...
随机推荐
- NDK学习笔记-多线程与生产消费模式
在做NDK开发的时候,很多情况下都是需要使用多线程的,一方面是提高程序运行效率,另一方面就是防止主线程阻塞 C的多线程 在C语言里,可以通过对于POSIX标准的运用,使得C语言执行多线程 提高程序的执 ...
- 三维空间建模方法之LOD模型算法
什么是LOD LOD也称为层次细节模型,是一种实时三维计算机图形技术,最先由Clark于1976年提出,其工作原理是: 视点离物体近时,能观察到的模型细节丰富:视点远离模型时,观察到的细节逐渐模糊.系 ...
- git 服务端安装
服务器端创建 git 用户,用来管理 Git 服务,并为 git 用户设置密码 [root@localhost home]# id git id: git:无此用户 [root@localhost h ...
- Design HashSet
Design a HashSet without using any built-in hash table libraries. To be specific, your design should ...
- html中'disabled'与'readonly'的区别
html中'disabled'与'readonly'的区别 此随笔增量编辑 disabled 在提交表单的时候 值不会带入表单中, 而readonly则可以将值带入表单中.
- numpy数组常用计算
在说numpy库数组的计算之前先来看一下numpy数组形状的知识: 创建一个数组之后,可以用shape来查看其形状,返回一个元组 例如:a = np.array([[1, 2, 3], [4, 5, ...
- Do Not Try This Problem(分块思想)
题意:https://codeforces.com/group/ikIh7rsWAl/contest/259944/problem/D 给你q个操作,4个数n,a,k,c,从n好位置开始每次加a的位置 ...
- 关于JS原型以及原型链、instanceof的一些理解
一.JS原型 首先要区分两个概念 1.构造函数 2.实例:由构造函数通过new方式创建出来的就是实例 <script> function Foo() { } var f = new Foo ...
- Tkinter(一)
采集小工具,目前采集主要针对知乎文章与评论,今天刚开始弄,会不断更新完善 目前效果(测试站点 :科技:测试连接:http://zhihu.sogou.com/include/pc/pc/topic/t ...
- zookeeper集群搭建与升级
zookeeper 1.zookeeper功能 1-1.配置管理 集中管理配置文件实现服务治理 1-2.命名服务 如为了通过网络访问一个系统,我们得知道对方的IP地址,但是IP地址对人非常不友好,这个 ...