Educational Codeforces Round 37-F.SUM and REPLACE (线段树,线性筛,收敛函数)
F. SUM and REPLACE
time limit per test2 seconds
memory limit per test256 megabytes
inputstandard input
outputstandard output
Let D(x) be the number of positive divisors of a positive integer x. For example, D(2) = 2 (2 is divisible by 1 and 2), D(6) = 4 (6 is divisible by 1, 2, 3 and 6).
You are given an array a of n integers. You have to process two types of queries:
REPLACE l r — for every replace ai with D(ai);
SUM l r — calculate .
Print the answer for each SUM query.
Input
The first line contains two integers n and m (1 ≤ n, m ≤ 3·105) — the number of elements in the array and the number of queries to process, respectively.
The second line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 106) — the elements of the array.
Then m lines follow, each containing 3 integers ti, li, ri denoting i-th query. If ti = 1, then i-th query is REPLACE li ri, otherwise it's SUM li ri (1 ≤ ti ≤ 2, 1 ≤ li ≤ ri ≤ n).
There is at least one SUM query.
Output
For each SUM query print the answer to it.
Example
inputCopy
7 6
6 4 1 10 3 2 4
2 1 7
2 4 5
1 3 5
2 4 4
1 5 7
2 1 7
outputCopy
30
13
4
22
https://codeforces.com/contest/920/problem/F
题意:
给你一个含有n个数的数组,和m个操作
操作1:将l~r中每一个数\(a[i]\)变成 \(d(a[i])\)
其中$ d(x)$ 是约数个数函数。
操作2: 求l~r的a[i] 的sum和。
思路:
$ d(x)$ 约数个数函数可以利用线性筛预处理处理。
又因为 \(d(2)=2\) 和 \(d(1)=1\) 操作1对a[i]等于1或者2没有影响。
那么我们可以对一个区间中全都是1或者2不更新操作。
同时 \(d(x)\) 是收敛函数, 在1e6 的范围内,最多不超过5次改变就会收敛到1或2.
所以更新操作可以暴力解决,
同时用线段树维护即可。
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define sz(a) int(a.size())
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
#define du3(a,b,c) scanf("%d %d %d",&(a),&(b),&(c))
#define du2(a,b) scanf("%d %d",&(a),&(b))
#define du1(a) scanf("%d",&(a));
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
ll powmod(ll a, ll b, ll MOD) {a %= MOD; if (a == 0ll) {return 0ll;} ll ans = 1; while (b) {if (b & 1) {ans = ans * a % MOD;} a = a * a % MOD; b >>= 1;} return ans;}
void Pv(const vector<int> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%d", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}}
void Pvl(const vector<ll> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%lld", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}}
inline void getInt(int *p);
const int maxn = 1000010;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
// d(n)表示n的约数个数和
// prime[i]表示第i个质数
//num[i]表示i的最小质因子出现次数
int sshu[maxn];
int N = maxn;
int num[maxn];
int d[maxn];
bool no[maxn];
int tot;
void prepare()
{
d[1] = 1; num[1] = 1;
for (int i = 2; i < N; i++) {
if (!no[i]) {
sshu[++tot] = i;
d[i] = 2; num[i] = 1;
}
for (int j = 1; j <= tot && sshu[j]*i < N; j++) {
int v = sshu[j] * i;
no[v] = 1;
if (i % sshu[j] == 0) {
num[v] = num[i] + 1;
d[v] = d[i] / num[v] * (num[v] + 1);
break;
}
d[v] = d[i] << 1; num[v] = 1;
}
}
//for (int i=1;i<=10;i++) printf("%d\n",d[i]);
}
int a[maxn];
struct node {
int l, r;
int laze;
bool isall;
ll num;
} segment_tree[maxn << 2];
void pushup(int rt)
{
segment_tree[rt].num = segment_tree[rt << 1].num + segment_tree[rt << 1 | 1].num;
segment_tree[rt].isall = segment_tree[rt << 1].isall & segment_tree[rt << 1 | 1].isall;
}
void build(int rt, int l, int r)
{
segment_tree[rt].l = l;
segment_tree[rt].r = r;
if (l == r) {
segment_tree[rt].num =a[l];
if (segment_tree[rt].num == 1 || segment_tree[rt].num == 2) {
segment_tree[rt].isall = 1;
}
return ;
}
int mid = (l + r) >> 1;
build(rt << 1, l, mid);
build(rt << 1 | 1, mid + 1, r);
pushup(rt);
}
void update(int rt, int l, int r)
{
if (l <= segment_tree[rt].l && r >= segment_tree[rt].r && segment_tree[rt].isall) {
return;
}
if (segment_tree[rt].l == segment_tree[rt].r) {
segment_tree[rt].num = d[segment_tree[rt].num];
if (segment_tree[rt].num == 1 || segment_tree[rt].num == 2) {
segment_tree[rt].isall = 1;
}
return ;
} else {
int mid = (segment_tree[rt].l + segment_tree[rt].r) >> 1;
if (mid >= l) {
update(rt << 1, l, r);
}
if (mid < r) {
update(rt << 1 | 1, l, r);
}
pushup(rt);
}
}
ll query(int rt, int l, int r)
{
if (segment_tree[rt].l >= l && segment_tree[rt].r <= r) {
ll res = 0ll;
res += segment_tree[rt].num;
return res;
}
int mid = (segment_tree[rt].l + segment_tree[rt].r) >> 1;
ll res = 0ll;
if (mid >= l) {
res += query(rt << 1, l, r);
}
if (mid < r) {
res += query(rt << 1 | 1, l, r);
}
return res;
}
int main()
{
//freopen("D:\\code\\text\\input.txt","r",stdin);
//freopen("D:\\code\\text\\output.txt","w",stdout);
prepare();
int n, m;
du2(n, m);
repd(i, 1, n) {
du1(a[i]);
}
build(1, 1, n);
repd(i, 1, m) {
int op; int l, r;
du3(op, l, r);
if (op == 1) {
update(1, l, r);
} else {
printf("%lld\n", query(1, l, r));
}
}
return 0;
}
inline void getInt(int *p)
{
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
} else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}
Educational Codeforces Round 37-F.SUM and REPLACE (线段树,线性筛,收敛函数)的更多相关文章
- 【Educational Codeforces Round 37】F. SUM and REPLACE 线段树+线性筛
题意 给定序列$a_n$,每次将$[L,R]$区间内的数$a_i$替换为$d(a_i)$,或者询问区间和 这题和区间开方有相同的操作 对于$a_i \in (1,10^6)$,$10$次$d(a_i) ...
- Educational Codeforces Round 23 F. MEX Queries 离散化+线段树
F. MEX Queries time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...
- 【Educational Codeforces Round 37 F】SUM and REPLACE
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 那个D函数它的下降速度是很快的. 也就是说到最后他会很快的变成2或者1 而D(2)==2,D(1)=1 也就是说,几次操作过后很多数 ...
- Educational Codeforces Round 64 (Rated for Div. 2) (线段树二分)
题目:http://codeforces.com/contest/1156/problem/E 题意:给你1-n n个数,然后求有多少个区间[l,r] 满足 a[l]+a[r]=max([l, ...
- Educational Codeforces Round 37
Educational Codeforces Round 37 这场有点炸,题目比较水,但只做了3题QAQ.还是实力不够啊! 写下题解算了--(写的比较粗糙,细节或者bug可以私聊2333) A. W ...
- Educational Codeforces Round 37 (Rated for Div. 2)C. Swap Adjacent Elements (思维,前缀和)
Educational Codeforces Round 37 (Rated for Div. 2)C. Swap Adjacent Elements time limit per test 1 se ...
- Educational Codeforces Round 40 F. Runner's Problem
Educational Codeforces Round 40 F. Runner's Problem 题意: 给一个$ 3 * m \(的矩阵,问从\)(2,1)$ 出发 走到 \((2,m)\) ...
- Educational Codeforces Round 37 A B C D E F
A. water the garden Code #include <bits/stdc++.h> #define maxn 210 using namespace std; typede ...
- codeforces 920 EFG 题解合集 ( Educational Codeforces Round 37 )
E. Connected Components? time limit per test 2 seconds memory limit per test 256 megabytes input sta ...
- [Codeforces]Educational Codeforces Round 37 (Rated for Div. 2)
Water The Garden #pragma comment(linker, "/STACK:102400000,102400000") #include<stdio.h ...
随机推荐
- 【转载】恢复误删文件--DOS命令应用实例(一)
<电脑爱好者>报转载第一辑第二篇之恢复误删文件--DOS命令应用实例(一) 恢复误删文件--DOS命令应用实例(一) 上期我们讲述了 ...
- 【首发】uExitCode解释
uExitCode 进程退出码,一般设置为0,不是的话也没有错误. 它的主要作用是,通知调用这个程序的其他程序退出的原因. 以前在dos下可能用的较多,现在windows下用的很少,而且windows ...
- 【FFMPEG】VS2013编译ffmpeg
原文:http://blog.csdn.net/uselym/article/details/49885867 由于VS2013支持c99了,所以,可以直接用vs2013进行ffmpeg的编译调试,而 ...
- OpenCV.概念(读书笔记)
ZC:学习OpenCV.pdf 1.多通道矩阵(学习OpenCV.pdf) 1.1.在学习opencv的时候看到多通道矩阵这一概率,恳求大神告诉我一下什么意思_百度知道.html(https://zh ...
- spring的控制器如何获取参数
1.控制器代码 获取参数的注解 @RequestParam(name="name", required=false, defaultValue="World") ...
- [学习笔记] Hibernate 4.3.5 下载与安装
下载 http://hibernate.org/orm/releases/4.3/ https://sourceforge.net/projects/hibernate/files/hibernate ...
- [NOI2019]序列
LOJ3158 , Luogu5470 从 \(a_1\dots a_n\) , \(b_1\dots b_n\) 中各选出 \(K\) 个数 , 且至少 \(L\) 组下标在两个数组中都被选择 , ...
- [转帖]【Oracle】详解Oracle中NLS_LANG变量的使用
[Oracle]详解Oracle中NLS_LANG变量的使用 https://www.cnblogs.com/HDK2016/p/6880560.html NLS_LANG=LANGUAGE_TERR ...
- 知乎Python后端面试总结
一面 写个快速排序热热身,分析一下复杂度,如果不使用额外的空间,应该怎么写? 说一下Flask中g是怎么实现的,原理是什么? 说一下浏览器从输入url到页面渲染的过程,越详细越好: 了解web安全吗? ...
- ubuntu18上传代码到github
其实在github上建仓库时候就提示你步骤了: 1.注册个github账号并登录 创建一个仓库 https://github.com/ 2.创建SSH Key ssh-keygen -t rsa -C ...