今天困得不行,就看了个小算法st,其实和线段树的作用一样,

不过这个算法没有用到数据结构,使用二进制优化的

是O(log(n)n)的时间预处理,然后以O(1)的时间返回(l,r)上的最大或最小

#include <iostream>
#include <cmath>
#include <cstdio>
#include <string>
#include <cstring> using namespace std;
typedef long long ll; const int N =1e5 +;
int a[N];
int n,m;
int f[N][];
void st_prework()
{
for(int i=;i<=n;i++)f[i][]=a[i];
int t = log(n)/log();
for(int j=;j<=t;j++)
{
for(int i=;i<=n-(<<j)+;i++)
{
f[i][j]=max(f[i][j-],f[i+(<<(j-))][j-]);
}
}
}
int main()
{
cin >> n >> m;
for(int i= ;i<=n;i++)
{
scanf("%d",&a[i]);
}
st_prework();
while(m--)
{
int l,r;
scanf("%d%d",&l,&r);
int k=log(r-l+)/log();
printf("%d\n", max(f[l][k],f[r-(<<k)+][k]));
}
return ;
}

st的题目:

P2880 [USACO07JAN]平衡的阵容Balanced Lineup 题解

#include <iostream>
#include <cmath>
#include <cstdio>
#include <string>
#include <cstring> using namespace std;
typedef long long ll; const int N =1e5 +;
int a[N];
int n,m;
int f[N][],d[N][];
void st_prework()
{
for(int i=;i<=n;i++)f[i][]=a[i],d[i][]=a[i];
int t = log(n)/log();
for(int j=;j<=t;j++)
{
for(int i=;i<=n-(<<j)+;i++)
{
f[i][j]=max(f[i][j-],f[i+(<<(j-))][j-]);
d[i][j]=min(d[i][j-],d[i+(<<(j-))][j-]);
}
}
}
int main()
{
cin >> n >> m;
for(int i= ;i<=n;i++)
{
scanf("%d",&a[i]);
}
st_prework();
while(m--)
{
int l,r;
scanf("%d%d",&l,&r);
int k=log(r-l+)/log();
printf("%d\n", max(f[l][k] ,f[r-(<<k)+][k]) - min(d[l][k],d[r - (<<k)+][k]));
}
return ;
}

P2251 质量检测

#include <iostream>
#include <cmath>
#include <cstdio>
#include <string>
#include <cstring> using namespace std;
typedef long long ll; const int N =1e5 +;
int a[N];
int n,m;
int f[N][],d[N][];
void st_prework()
{
for(int i=;i<=n;i++)f[i][]=a[i],d[i][]=a[i];
int t = log(n)/log();
for(int j=;j<=t;j++)
{
for(int i=;i<=n-(<<j)+;i++)
{
d[i][j]=min(d[i][j-],d[i+(<<(j-))][j-]);
}
}
}
int main()
{
cin >> n >> m;
for(int i= ;i<=n;i++)
{
scanf("%d",&a[i]);
}
st_prework();
for(int i=;i<=n-m+;i++)
{
int k =log(m)/log();
printf("%d\n",min(d[i][k],d[i+m- - (<<k)+][k]));
}
return ;
}

基本算法 st的更多相关文章

  1. 【基础算法-ST表】入门 -C++

    前言 学了树状数组看到ST表模板跃跃欲试的时候发现完全没思路,因为给出的查询的时间实在太短了!几乎是需要完成O(1)查询.所以ST表到底是什么神仙算法能够做到这么快的查询? ST表 ST表是一个用来解 ...

  2. 线段树(two value)与树状数组(RMQ算法st表)

    士兵杀敌(三) 时间限制:2000 ms  |  内存限制:65535 KB 难度:5 描述 南将军统率着N个士兵,士兵分别编号为1~N,南将军经常爱拿某一段编号内杀敌数最高的人与杀敌数最低的人进行比 ...

  3. LCA在线算法ST算法

    求LCA(近期公共祖先)的算法有好多,按在线和离线分为在线算法和离线算法. 离线算法有基于搜索的Tarjan算法较优,而在线算法则是基于dp的ST算法较优. 首先说一下ST算法. 这个算法是基于RMQ ...

  4. 详解RMQ-ST算法 ST模板

    RMQ问题是求解区间最值的问题. 这里分析的是ST算法,它可以对所有要处理的数据做到O(nlogn)的预处理,对每个区间查询做到O(1)查询 ST算法本质是一个DP的过程 这里通过举一个求最大值实例来 ...

  5. [CF 191C]Fools and Roads[LCA Tarjan算法][LCA 与 RMQ问题的转化][LCA ST算法]

    参考: 1. 郭华阳 - 算法合集之<RMQ与LCA问题>. 讲得很清楚! 2. http://www.cnblogs.com/lazycal/archive/2012/08/11/263 ...

  6. SPOJ RPLN (模板题)(ST算法)【RMQ】

    <题目链接> 题目大意:给你一段序列,进行q次区间查询,每次都输出询问区间内的最小值. 解题分析: RMQ模板题,下面用在线算法——ST算法求解.不懂ST算法的可以看这篇博客  >& ...

  7. LCA(最近公共祖先)——dfs+ST 在线算法

    一.前人种树 博客:浅谈LCA的在线算法ST表 二.沙场练兵 题目:POJ 1330 Nearest Common Ancestors 题解博客:http://www.cnblogs.com/Miss ...

  8. [总结]RMQ问题&ST算法

    目录 一.ST算法 二.ST算法の具体实现 1. 初始化 2. 求出ST表 3. 询问 三.例题 例1:P3865 [模板]ST表 例2:P2880 [USACO07JAN]平衡的阵容Balanced ...

  9. 浅谈ST表

    发现自己学的一直都是假的ST表QWQ. ST表 ST表的功能很简单 它是解决RMQ问题(区间最值问题)的一种强有力的工具 它可以做到$O(nlogn)$预处理,$O(1)$查询最值 算法 ST表是利用 ...

随机推荐

  1. ADRMS与office的整合(一)

    因为微软之前针对客户的RMS加密服务是一种免费的测试服务,虽然用户很多但实质上还是一种“测试服务”. 后来微软把这个服务商业化了,需要继续使用的话需要打下这个补丁 https://support.mi ...

  2. appium(api操作)

    driver.current_activity #获取当前activity driver.current_package #获取包名 driver.lock(seconds=2) #息屏 #收起虚拟键 ...

  3. logstash数据迁移

    logstash是一个非常强大的数据迁移工具.这里主要记录今天使用到的几个简单用法. 其中比较需要注意的是 迁移到elasticsearch的时候,output 的 elasticsearch 中的 ...

  4. ORK

    小试OKR一季度之后有感分享,你要不要试试ORK?   封面 OKR已经在国内热火朝天有一阵子了,为了适当的赶时髦,从年初开始团队内部小范围使用ORK模式以便测试团队会有什么化学反应.这篇文章打算写写 ...

  5. [转载]由浅入深探究mysql索引结构原理、性能分析与优化

    第一部分:基础知识第二部分:MYISAM和INNODB索引结构1. 简单介绍B-tree B+ tree树 2. MyisAM索引结构 3. Annode索引结构 4. MyisAM索引与InnoDB ...

  6. odoo12安装指南

    声明:本指南默认已安装好Python3和pycharm及postgresql,odoo12的源码包 一. 1.在pycharm创建一个新的项目 建议创建在虚拟环境中 2.在pycharm的控制台下检验 ...

  7. jQuery实现form表单序列化转换为json对象功能示例

    <!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <title&g ...

  8. 用python打开文件夹的三种方式

    一.利用explorer.exe import os # 利用explorer.exe执行 start_directory = r'C:\代码\软件包' os.system("explore ...

  9. S02_CH08_ ZYNQ 定时器中断实验

    S02_CH08_ ZYNQ 定时器中断实验 上一章实现了PS接受来自PL的中断,本章将在ZYNQ的纯PS里实现私有定时器中断.每隔一秒中断一次,在中断函数里计数加1,通过串口打印输出. 8.1中断原 ...

  10. HTTP API自动化测试

    重构:发现测试的价值 回到起点,测试要解决什么问题,为什么要做API自动化测试平台?做这个平台,不是为了满足老板的提倡全民自动化的口号,也不是为了浮夸的KPI,更不是宣传自动化可以解决一切问题,发现所 ...