点“计算机视觉life”关注,置顶更快接收消息!


本文列举了当前优秀SLAM方案,点出了SLAM学习者的困境,最后打算搞点大事

请把此文转发给你认识的SLAM大神,愿你头发浓密,心想事成

当前优秀SLAM方案一览

研究SLAM的小伙伴入门的时候都经历过痛苦阶段,这是因为SLAM是个系统工程,算法比较难实现。但好在有不少优秀的开源代码可以借鉴,这里列举一些目前比较流行的开源SLAM方案(分类方式不一定科学,凑合看哈):

纯视觉SLAM开源方案:

稀疏地图

  • ORB SLAM v2 (单目、双目、RGB-D)

半稠密地图

  • LSD SLAM (单目、双目、RGB-D)
  • DSO (单目)
  • SVO(单目, 仅VO)

稠密地图

  • RGB-D SLAM V2 (RGB-D)
  • Kintinuous (RGB-D)
  • Elastic Fusion (RGB-D)
  • Bundle Fusion (RGB-D)
  • InfiniTAM (RGB-D)
  • RTAB-Map (RGB-D,双目,LIDAR)

多传感器融合

  • VINS (单目+IMU、双目+IMU)
  • OKVIS (单目+IMU、双目+IMU)
  • ROVIO (单目+IMU)
  • RKSLAM (单目+IMU)
  • Cartographer (LIDAR + IMU)
  • V-LOAM (单目+LIDAR)

和深度学习结合

  • CNN-SLAM: 将LSD-SLAM里的深度估计和图像匹配都替换成基于CNN的方法,并可以融合语义
  • VINet : Visual-inertial odometry as a sequence-to-sequence learning problem: 利用CNN和RNN构建了一个VIO,即输入image和IMU信息,直接输出估计的pose
  • 3DMV: Joint 3D-Multi-View Prediction for 3D Semantic Scene Segmentation: 联合3D多视图预测网络在室内环境中进行RGB-D扫描的3D语义场景分割
  • ScanComplete: Large-Scale Scene Completion and Semantic Segmentation for 3D Scans: 将场景的不完整3D扫描作为输入,能够预测出完整的3D模型以及每个体素的语义标签
  • DeepVO: A Deep Learning approach for Monocular Visual Odometry
  • Lightweight Unsupervised Deep Loop Closure: 用CNN解决闭环问题

以上不全,还请大神留言补充哈

下面是重点~

那些年有没有哭晕在厕所?

很多研究SLAM的小伙伴通常会经历以下阶段:

  1. 看SLAM相关的论文,发现很多公式、理论看不懂,好不容易努力看了个大概,也不知道具体怎么用。
  2. 于是去跑开源代码,安装调试出错,网上也找不到解决方案。不知道是环境配置问题还是代码有bug。
  3. 好不容易跑通了代码。在实际测试时发现问题很多,远不如论文里写的那么牛逼,不知道这个算法的适用场景是什么。抓不住重点瞎折腾,浪费了时间。
  4. 没办法,硬着头皮去看代码,代码量又非常大,看起来非常痛苦,急需大牛帮忙梳理思路。
  5. 摸索了很久,终于发现有几个点(藏的很深)好像比较影响算法性能,还发现了一些trick的东西。自己也不会改进,感觉被骗了,纠结要不要换个开源试试。
  6. 反反复复好不容易找到适合自己的开源方案,发现上面过程要再来一遍,想要理清代码,搞懂原理也要花费大量精力,更别提改进代码了。
  7. 哭晕在SLAM的汪洋大海里。。。

学习SLAM中经历上述阶段是令人痛苦的,关键是浪费了很多宝贵的时间,即使是SLAM大神,我估计或多或少都经历过上述阶段。如果一开始有大神指点一下,肯定能绕开不少坑吧

希望在这里

基于此,计算机视觉life想要做一件事情,就是解读目前流行的开源SLAM方案(包括但不限于上述列表),帮助SLAM学习者少踩坑。如果你是一位SLAM研究者,对目前SLAM流行的开源方案有一定研究,可以加入我们,一起搞点大事。

加入方法:

请简单介绍一下自己的基本信息,如果能直接附上简历(可选)就更好啦,基本信息包括但不限于:

姓名、微信号、所在学校/公司、熟悉哪个SLAM框架,可以详细描述一下特长:比如对xx开源算法熟悉原理应用,做过xx项目,发表过xx论文,主导过xx产品等。

以上越详细越好,请务必留下微信号,方便取得联系

本文长期有效,请将上述信息发送至 simiter@126.com,邮件标题「开源SLAM」。不管是否通过筛选,一周内都会收到回复。

最后,请把此文转发给你认识的SLAM大神,愿你头发浓密,心想事成

推荐阅读

从零开始一起学习SLAM | 为什么要学SLAM?
从零开始一起学习SLAM | 学习SLAM到底需要学什么?
从零开始一起学习SLAM | SLAM有什么用?
从零开始一起学习SLAM | C++新特性要不要学?
从零开始一起学习SLAM | 为什么要用齐次坐标?
从零开始一起学习SLAM | 三维空间刚体的旋转
从零开始一起学习SLAM | 为啥需要李群与李代数?
从零开始一起学习SLAM | 相机成像模型
从零开始一起学习SLAM | 不推公式,如何真正理解对极约束?
从零开始一起学习SLAM | 神奇的单应矩阵
从零开始一起学习SLAM | 你好,点云
从零开始一起学习SLAM | 给点云加个滤网
从零开始一起学习SLAM | 点云平滑法线估计
从零开始一起学习SLAM | 点云到网格的进化
从零开始一起学习SLAM | 理解图优化,一步步带你看懂g2o代码
零基础小白,如何入门计算机视觉?
SLAM领域牛人、牛实验室、牛研究成果梳理
我用MATLAB撸了一个2D LiDAR SLAM
可视化理解四元数,愿你不再掉头发
最近一年语义SLAM有哪些代表性工作?
视觉SLAM技术综述
汇总 | VIO、激光SLAM相关论文分类集锦

快看,那个学SLAM 的崩溃了!的更多相关文章

  1. 快看Sample代码,速学Swift语言(1)-语法速览

    Swift是苹果推出的一个比较新的语言,它除了借鉴语言如C#.Java等内容外,好像还采用了很多JavaScript脚本里面的一些脚本语法,用起来感觉非常棒,作为一个使用C#多年的技术控,对这种比较超 ...

  2. 快看Sample代码,速学Swift语言(2)-基础介绍 快看Sample代码,速学Swift语言(1)-语法速览

    快看Sample代码,速学Swift语言(2)-基础介绍 Swift语言是一个新的编程语言,用于iOS, macOS, watchOS, 和 tvOS的开发,不过Swift很多部分内容,我们可以从C或 ...

  3. 跟vczh看实例学编译原理——一:Tinymoe的设计哲学

    自从<序>胡扯了快一个月之后,终于迎来了正片.之所以系列文章叫<看实例学编译原理>,是因为整个系列会通过带大家一步一步实现Tinymoe的过程,来介绍编译原理的一些知识点. 但 ...

  4. 跟vczh看实例学编译原理——三:Tinymoe与无歧义语法分析

    文章中引用的代码均来自https://github.com/vczh/tinymoe.   看了前面的三篇文章,大家应该基本对Tinymoe的代码有一个初步的感觉了.在正确分析"print ...

  5. 跟vczh看实例学编译原理——零:序言

    在<如何设计一门语言>里面,我讲了一些语言方面的东西,还有痛快的喷了一些XX粉什么的.不过单纯讲这个也是很无聊的,所以我开了这个<跟vczh看实例学编译原理>系列,意在科普一些 ...

  6. 看代码学知识之(2) ListView无数据时显示其他View

    看代码学知识之(2) ListView无数据时显示其他View 今天看的一块布局是这样的: <!-- The frame layout is here since we will be show ...

  7. 看日记学git摘要~灰常用心的教程

    看日记学git linux 命令行 cd ls / ls -a clear mkdir rmdir echo "hi, good day" > hi.txt touch he ...

  8. 比年轻更年轻,快看能否接棒B站?

    撰文 |懂懂 编辑 | 秦言 来源:懂懂笔记 背靠超新Z世代,快看能否接棒B站? 国漫什么时候能追上日漫? 国漫作者真能挣到钱吗? 国漫什么时候才能走向世界? 这是中国漫画从业者的"灵魂三问 ...

  9. 快看Sample代码,速学Swift语言(2)-基础介绍

    Swift语言是一个新的编程语言,用于iOS, macOS, watchOS, 和 tvOS的开发,不过Swift很多部分内容,我们可以从C或者Objective-C的开发经验获得一种熟悉感.Swif ...

随机推荐

  1. canvas梦幻七彩泡泡

      <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&q ...

  2. Flask框架(2)--编写简单的用户注册--登录场景

    为了更好的理解web前后端的工作业务逻辑:本笔记记录用flask框架编写的一个最初级的代码实现简单的用户注册,登录场景: 初次进入首页,提示--游客,欢迎参观,有登录和注册选项, 登录成功后的用户,会 ...

  3. 【MM系列】在SAP里查看数据的方法

    公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[MM系列]在SAP里查看数据的方法   前言部 ...

  4. OAuth 2.0 授权认证详解

    一.认识 OAuth 2.0 1.1 OAuth 2.0 应用场景 OAuth 2.0 标准目前被广泛应用在第三方登录场景中,以下是虚拟出来的角色,阐述 OAuth2 能帮我们干什么,引用阮一峰这篇理 ...

  5. 【VS开发】【miscellaneous】 Windows下配置Git

    [转自]http://blog.csdn.net/exlsunshine/article/details/18939329 1.从git官网下载windows版本的git:http://git-scm ...

  6. 排序算法三:Shell插入排序

    排序算法三:Shell插入排序 声明:引用请注明出处http://blog.csdn.net/lg1259156776/ 引言 在我的博文<"主宰世界"的10种算法短评> ...

  7. python 使用 RabbitMQ

    一.RabbitMQ消息队列介绍 RabbitMQ是在两个独立得python程序,或其他语言交互时使用. RabbitMQ:erlang语言 开发的. Python中连接RabbitMQ的模块:pik ...

  8. GB2312、GBK、GB18030 这几种字符集的主要区别

    1 GB2312-80 GB 2312 或 GB 2312-80 是中国国家标准简体中文字符集,全称<信息交换用汉字编码字符集·基本集>,又称 GB 0,由中国国家标准总局发布,1981 ...

  9. Django打印出在数据库中执行的语句

    有时我们需要看models操作时对应的SQL语句, 可以用如下方法查看--- 在django project中的settings文件尾部添加如下代码 LOGGING = { 'version': 1, ...

  10. Java+Tomcat 环境部署

    Java+Tomcat 环境部署 下面在Centos7进行安装Java+Tomcat,网上的很多文章,我在部署中都有些问题,下面是我自己总结的一个安装过程! 安装Java环境 首先,我们先到Java官 ...