链接:http://poj.org/problem?id=1401

题意:计算N!的末尾0的个数

思路:算数基本定理

有0,分解为2*5,寻找2*5的对数,2的因子个数大于5,转化为寻找因子5的个数。又有算数基本定理:

n!在素数因子分解中p的幂为[n/p]+[n/p2]+[n/p3]+...

同时最大次数不会超过logpn。通过换底公式,有ln(n)/ln(p)

代码:(51Nod去掉t循环即可)

 #include <iostream>
#include <math.h>
using namespace std;
int main() {
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
ios::sync_with_stdio(false);
int n,t;
cin>>t;
while(t--) {
cin>>n;
int num=,sum=,index=(int)(log(n*1.0)/log(*1.0));
for(int i=; i<=index; ++i) {
sum+=n/num;
num*=;
}
cout<<sum<<endl;
}
return ;
}

pku 1401 Factorial 算数基本定理 && 51nod 1003 阶乘后面0的数量的更多相关文章

  1. 51Nod 1003 阶乘后面0的数量(数学,思维题)

    1003 阶乘后面0的数量 基准时间限制:1 秒 空间限制:131072 KB 分值: 5         难度:1级算法题 n的阶乘后面有多少个0? 6的阶乘 = 1*2*3*4*5*6 = 720 ...

  2. 51Nod 1003 阶乘后面0的数量 | 思维

    题意:n的阶乘后面0的个数,如果直接算出阶乘再数0的数量一定会超时的. 因为10=2*5,所以求出5贡献的次数就行. #include "bits/stdc++.h" using ...

  3. 51nod 1003 阶乘后面0的数量

    每一个 2 与一个 5 相乘,结果就增加一个零. 所以求 n! 后面的连续零的个数,其实就是求其中相乘的数含有因子每对因子 2 与 5  的个数. 又因为从1到某个数,所含 2 的个数比 5 多,所以 ...

  4. 51Nod:1003 阶乘后面0的数量

    1003 阶乘后面0的数量  基准时间限制:1 秒 空间限制:131072 KB 分值: 5 难度:1级算法题  收藏  关注 n的阶乘后面有多少个0? 6的阶乘 = 1*2*3*4*5*6 = 72 ...

  5. 1001 数组中和等于K的数对 1002 数塔取数问题 1003 阶乘后面0的数量 1004 n^n的末位数字 1009 数字1的数量

    1001 数组中和等于K的数对 基准时间限制:1 秒 空间限制:131072 KB 分值: 5 难度:1级算法题 给出一个整数K和一个无序数组A,A的元素为N个互不相同的整数,找出数组A中所有和等于K ...

  6. 51 Nod 阶乘后面0的数量

    1003 阶乘后面0的数量  基准时间限制:1 秒 空间限制:131072 KB 分值: 5 难度:1级算法题  收藏  关注 n的阶乘后面有多少个0? 6的阶乘 = 1*2*3*4*5*6 = 72 ...

  7. (数学 尾0的个数) 51nod1003 阶乘后面0的数量

    n的阶乘后面有多少个0? 6的阶乘 = 1*2*3*4*5*6 = 720,720后面有1个0. 收起   输入 一个数N(1 <= N <= 10^9) 输出 输出0的数量 输入样例 5 ...

  8. 51nod_1003 阶乘后面0的数量(求N!中5的个数,数论)

    题意: n的阶乘后面有多少个0? 6的阶乘 = 1*2*3*4*5*6 = 720,720后面有1个0.   Input 一个数N(1 <= N <= 10^9) OutPut 输出0的数 ...

  9. 51Nod 1003 1004 1009

    1003 阶乘后面0的数量 基准时间限制:1 秒 空间限制:131072 KB 分值: 5 难度:1级算法题 n的阶乘后面有多少个0? 6的阶乘 = 1*2*3*4*5*6 = 720,720后面有1 ...

随机推荐

  1. LeetCode 153. Find Minimum in Rotated Sorted Array (在旋转有序数组中找到最小值)

    Suppose an array sorted in ascending order is rotated at some pivot unknown to you beforehand. (i.e. ...

  2. C11 constant expressions 常量表达式

    一图流总结hhh

  3. 读书笔记-你不知道的JS中-promise(2)

    继续填坑 模式 考虑下面的代码: function fn(x) { //do something return new Promise(function(resolve, reject) { //调用 ...

  4. Oracle-3 - :超级适合初学者的入门级笔记--用户权限,set运算符,高级子查询

    上一篇的内容在这里第二篇内容, 用户权限:创建用户,创建角色,使用grant  和 revoke 语句赋予和回收权限,创建数据库联接 创建用户:create user xxx identified b ...

  5. 【译】Asp.Net Identity Cookies 格式化

    原文出处 Trailmax Tech Max Vasilyev: ASP.Net MVC development in Aberdeen, Scotland 中英对照版 我的读者联系到我,并向我提出了 ...

  6. HTML知识速递

    1.html的定义 超文本标记语言(Hypertext Markup Language,HTML)通过标签语言来标记要显示的网页中的各个部分.一套规则,浏览器认识的规则 浏览器按顺序渲染网页文件,然后 ...

  7. Delphi工程版本号修改工具

    自动修改某目录下符合条件的Delphi工程(dproj)版本号, 支持命令行调用支持通配符忽略文件 -p [Path] 在[Path]路径下查询所有dproj文件(可以为空, 默认路径为程序当前路径) ...

  8. C#图片水印代码整理

    这一段公司有个项目,客户要求上传的图片要带上自定义的水印.以前也经常和朋友讨论C#图片水印方面的问题,但是从来没有实际操作过.所以,借这次项目的机会也研究了一下C#图片水印的功能!本人参考的是disc ...

  9. 通过游戏认识 --- JQuery与原生JS的差异

      前言 jQuery是一个快速.简洁的JavaScript框架,是继Prototype之后又一个优秀的JavaScript代码库( 或JavaScript框架).jQuery设计的宗旨是“write ...

  10. UNIX标准及实现

    UNIX标准及实现 引言     在UNIX编程环境和C程序设计语言的标准化方面已经做了很多工作.虽然UNIX应用程序在不同的UNIX操作系统版本之间进行移植相当容易,但是20世纪80年代UNIX版本 ...