Description

There are n cities in Berland, each of them has a unique id — an integer from 1 to n, the capital is the one with id 1. Now there is a serious problem in Berland with roads — there are no roads.

That is why there was a decision to build n - 1 roads so that there will be exactly one simple path between each pair of cities.

In the construction plan t integers a1, a2, …, at were stated, where t equals to the distance from the capital to the most distant city, concerning new roads. ai equals the number of cities which should be at the distance i from the capital. The distance between two cities is the number of roads one has to pass on the way from one city to another.

Also, it was decided that among all the cities except the capital there should be exactly k cities with exactly one road going from each of them. Such cities are dead-ends and can’t be economically attractive. In calculation of these cities the capital is not taken into consideration regardless of the number of roads from it.

Your task is to offer a plan of road’s construction which satisfies all the described conditions or to inform that it is impossible.

Input

The first line contains three positive numbers n, t and k (2 ≤ n ≤ 2·105, 1 ≤ t, k < n) — the distance to the most distant city from the capital and the number of cities which should be dead-ends (the capital in this number is not taken into consideration).

The second line contains a sequence of t integers a1, a2, …, at (1 ≤ ai < n), the i-th number is the number of cities which should be at the distance i from the capital. It is guaranteed that the sum of all the values ai equals n - 1.

Output

If it is impossible to built roads which satisfy all conditions, print -1.

Otherwise, in the first line print one integer n — the number of cities in Berland. In the each of the next n - 1 line print two integers — the ids of cities that are connected by a road. Each road should be printed exactly once. You can print the roads and the cities connected by a road in any order.

If there are multiple answers, print any of them. Remember that the capital has id 1.

Examples

input
7 3 3
2 3 1 output
7
1 3
2 1
2 6
2 4
7 4
3 5 input
14 5 6
4 4 2 2 1 output
14
3 1
1 4
11 6
1 2
10 13
6 10
10 12
14 12
8 4
5 1
3 7
2 6
5 9 input
3 1 1
2 output
-1

Key

题意:给一棵一共有n个结点(包括根节点)的树,一共有t+1层。除第一层只有一个根节点外,给出了其他每层的节点数。已知有k个结点没有子节点,要求用n−1个树枝连接所有结点,给出一种可能的连法。

可能的连法(可能)有很多,只要输出随便其中一个即可。

思路:先遍历一遍所有层,求出可行的最大最小的maxk、mink。如果题目给的k不在此范围内,则说明不能组成符合要求的树。这是唯二输出“-1”的情况。

求能产生的最少的无儿子结点:



求能产生的最多的无儿子结点:

令needk=k−mink,则除去一定有的无儿子结点,还有needk个无儿子结点需要手动产生。

然后遍历每一层,自己做出needk个无儿子结点即可。无需建立树,边遍历边输出。

第一次写出了最后一题,开心的一匹(ง •̀▿•́)ง。虽然写了就知道并不难。。。

Code

#include<cstdio>
int n, t, k;
int arr[200010]; int main()
{
scanf("%d%d%d", &n, &t, &k);
arr[0] = 1;
for (int i = 1;i <= t;++i) {
scanf("%d", arr + i);
}
arr[t + 1] = 0;
int mink = 0;
int maxk = 0;
for (int i = 0;i <= t;++i) {
maxk += arr[i] - 1;
if (arr[i] > arr[i + 1])
mink += arr[i] - arr[i + 1];
}
++maxk;
if (mink > k || maxk < k) {
printf("-1");
return 0;
}
printf("%d\n", n);
int needk = k - mink; // dead-ends that needed to created by myself
int nown = 1;
for (int i = 0;i != t;++i) {
int nextn = nown + arr[i];
if (!needk) {
if (arr[i + 1] >= arr[i]) {
int err = arr[i + 1] - arr[i] + 1;
int rem = arr[i] - 1;
for (int j = 0;j != err;++j) {
printf("%d %d\n", nown, nextn++);
}
++nown;
for (int j = 0;j != rem;++j) {
printf("%d %d\n", nown++, nextn++);
}
}
else { // arr[i + 1] < arr[i]
for (int j = 0;j != arr[i + 1];++j) {
printf("%d %d\n", nown++, nextn++);
}
nown += arr[i] - arr[i + 1];
}
}
else {
if (arr[i + 1] >= arr[i]) {
int nextnown = nextn;
int nextnextn = nextn + arr[i + 1];
int err = arr[i + 1] - arr[i] + 1;
for (int j = 0;j != err;++j) {
printf("%d %d\n", nown, nextn++);
}
while (nextn != nextnextn) {
if (!needk) break;
--needk;
printf("%d %d\n", nown, nextn++);
}
++nown;
while (nextn != nextnextn) {
printf("%d %d\n", nown++, nextn++);
}
nown = nextnown;
}
else { // arr[i + 1] < arr[i]
int nextnown = nextn;
int nextnextn = nextn + arr[i + 1];
printf("%d %d\n", nown, nextn++);
while (nextn != nextnextn) {
if (!needk) break;
--needk;
printf("%d %d\n", nown, nextn++);
}
++nown;
while (nextn != nextnextn) {
printf("%d %d\n", nown++, nextn++);
}
nown = nextnown;
}
}
}
return 0;
}

[刷题]Codeforces 746G - New Roads的更多相关文章

  1. [刷题]Codeforces 794C - Naming Company

    http://codeforces.com/contest/794/problem/C Description Oleg the client and Igor the analyst are goo ...

  2. [刷题codeforces]650A.637A

    650A Watchmen 637A Voting for Photos 点击查看原题 650A又是一个排序去重的问题,一定要注意数据范围用long long ,而且在写计算组合函数的时候注意也要用l ...

  3. [刷题codeforces]651B/651A

    651B Beautiful Paintings 651A Joysticks 点击可查看原题 651B是一个排序题,只不过多了一步去重然后记录个数.每次筛一层,直到全为0.从这个题里学到一个正确姿势 ...

  4. [刷题]Codeforces 786A - Berzerk

    http://codeforces.com/problemset/problem/786/A Description Rick and Morty are playing their own vers ...

  5. CF刷题-Codeforces Round #481-G. Petya's Exams

    题目链接:https://codeforces.com/contest/978/problem/G 题目大意:n天m门考试,每门考试给定三个条件,分别为:1.可以开始复习的日期.2.考试日期.3.必须 ...

  6. CF刷题-Codeforces Round #481-F. Mentors

    题目链接:https://codeforces.com/contest/978/problem/F 题目大意: n个程序员,k对仇家,每个程序员有一个能力值,当甲程序员的能力值绝对大于乙程序员的能力值 ...

  7. CF刷题-Codeforces Round #481-D. Almost Arithmetic Progression

    题目链接:https://codeforces.com/contest/978/problem/D 题解: 题目的大意就是:这组序列能否组成等差数列?一旦构成等差数列,等差数列的公差必定确定,而且,对 ...

  8. Codeforces 746G New Roads (构造)

                                                                            G. New Roads                 ...

  9. [刷题]Codeforces 785D - Anton and School - 2

    Description As you probably know, Anton goes to school. One of the school subjects that Anton studie ...

随机推荐

  1. 平时自己项目中用到的CSS

    outline  当选中input元素的时候会出现状态线, outline设置成none就没了 input{ outline:none; } contentditable  设置元素内的文本是否可编辑 ...

  2. unity3d 中文乱码解决方法——cs代码文件格式批量转化UTF8

    在Unity3d中经常会碰到中文乱码的问题,比如代码中的[AddComponentMenu("GameDef/AI/战机AI")],注释,中文文本等等 其原因在于,unity本身是 ...

  3. IOS开发创建开发证书及发布App应用(六)——打包应用

    6.打包应用 如下图,生成之后点击下面红框的按钮,按时间排序,然后点最新的一次生成 从右侧生成日志中找到如下图红框标识的部分,找到 -output ,把下面浅蓝色选中,这是app生成的文件夹路径 点击 ...

  4. loadrunner提高篇-block(块)技术和参数化

    Block(块)技术 block(块)技术是应用于在一个脚本中实现不同事务.不同次数循环或不同百分比循环的情况.比如在一个脚本中,登录执行3次,查询执行1次. 使用方法如下: 1.录制一个脚本,包含2 ...

  5. socket bind详解

    http://www.cnblogs.com/nightwatcher/archive/2011/07/03/2096717.html 在最开始接触bind的时候,只是在写基于tcp的server端的 ...

  6. 自动生成并导出word文档

    今天很荣幸又破解一现实难题:自动生成并导出word文档 先看页面效果: word效果: 代码: 先搭建struts2项目 创建action,并在struts.xml完成注册 <?xml vers ...

  7. Html5-测试Canvas

      // 浏览器不支持Html5 Canvas"; var theCanvas=document.getElementById("canvas_one"); if(!th ...

  8. 老李推荐:第5章5节《MonkeyRunner源码剖析》Monkey原理分析-启动运行: 获取系统服务引用

    老李推荐:第5章5节<MonkeyRunner源码剖析>Monkey原理分析-启动运行: 获取系统服务引用   上一节我们描述了monkey的命令处理入口函数run是如何调用optionP ...

  9. Android之利用正则表达式校验邮箱、手机号、密码、身份证号码等

    概述 现在Android应用在注册的时候基本会校验邮箱.手机号.密码.身份证号码其中一项或多项,特此收集了相关的正则表达式给大家分享.除了正则表达式,文章末尾提供Demo中有惊喜哦! 具体验证的图片效 ...

  10. python_嵌套列表变成普通列表

    如何把[1, 5, 6, [2, 7, [3, [4, 5, 6]]]]变成[1, 5, 6, 2, 7, 3, 4, 5, 6]? 思考: -- for循环每次都遍历列表一层 -- 把取出的单个值加 ...