其实对Mysql查询语句进行优化是一件非常有必要的事情。

如何查看当前sql语句的执行效率呢?

1.建一张学生表

 CREATE TABLE `student` (
`stu_id` int(11) NOT NULL AUTO_INCREMENT COMMENT '学号(主键id)',
`stu_name` varchar(255) COLLATE utf8mb4_bin DEFAULT NULL COMMENT '学生姓名',
`stu_age` tinyint(4) DEFAULT NULL COMMENT '学生年龄',
PRIMARY KEY (`stu_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_bin COMMENT='学生表';

2.加入几条测试数据

 INSERT INTO `test`.`Student` (`stu_id`, `stu_name`, `stu_age`) VALUES ('', '岳云鹏', '');
INSERT INTO `test`.`Student` (`stu_id`, `stu_name`, `stu_age`) VALUES ('', '薛之谦', '');
INSERT INTO `test`.`Student` (`stu_id`, `stu_name`, `stu_age`) VALUES ('', '郭德纲', '');
INSERT INTO `test`.`Student` (`stu_id`, `stu_name`, `stu_age`) VALUES ('', '范冰冰', '');
INSERT INTO `test`.`Student` (`stu_id`, `stu_name`, `stu_age`) VALUES ('', '李晨', '');

3.加入查询语句

EXPLAIN

SELECT * FROM student WHERE stu_age=18

我们可以看到结果如下:

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAABHAAAABnCAIAAADniCK9AAAXiElEQVR4nO3d0W8T55rH8fc/YS+SdRxf9h4um6BV0jrry7Z/wAlE2oukOklOfYuE1JSKC7QNXR0IqL48inJoA9JWImKlJYSm1gpRU1U6OpwiCA0QEg5QZi/GnnnnnXfG9tgz877296NRa4/H9jPPTMbvz2Mb4TiO4zj7La9T4DhOJ/8FAAAAALsI93+pBirSFAAAAICBlEWgcjhDBQAAAGAQcYYKAAAAABLiDBUAAAAAJMQZKgAAAABIiDNUAAAAAJAQZ6gAAAAAICHOUAEAAABAQmqgAgAAAAB0iEAFAAAAAAkRqAAAAAAgITVQZf+hw3hnzp43dsq7NwAAAAByZkGgyrsEPWMLAwAAAJAZfaDK/eSP+SeCcm+LmVPemwUAAADIVGSgemsGY8foRrXIkGKM3VgAAABASuIC1XMDGDtGP3P2fN69ef78+fO3UqAyoZK8NwsAAACQKQJVQgQqbSV5bxYAAAAgU5GB6s2bN88MEDtGr1VEpSZdr1dLgeuOU6+WRIRStd5L486cPZ93b549e/bszZs3bqDKfXu5lfTSUgAAAMA6cYGqp99j/68Pxj79n54eYX9/f38/Zoxer5aUUKQNVN4yUZcdx3FqFSGEct94Z86e733teicHKhMq6aKDAAAAgP3iAtVvYV9/ID742r889umt8AIRvPt1JXqM7p2eijgLVarWOzpDVa+WhChVKqWuA5W+Obc+HWut8QdSM8Y+veU3z19GBJbovj9yoNLcfOvTMb/vgSsaX3+QqIRAJQl3QwAAAMBOkYHq9evXeyEXp8empzVZQAghxha29vb2Lk6L6Yu6O2pntxc1Rm+djAqcakp+hsqpV7sPVPqV3FoYG1vYktb44rTbGneJsYWtvdYySmuVOR15/fq1G6i022tva2HM7/vWwtj0xa2FsYhNoSmq+0q66CAAAABgv7hA9USxNV8ozG+pc4NWp6POCE2vxt9TL2qMXpHOM2lPQ8WevZLPULmSBCr9ehcKBW+NV6enV5+sTktd25ovTK/qOhlYqnNyoJLnb80XhPtEft9bV5q3xW2sBJuMQAUAAIAhFBeoHgfcnC+IwvxN90LI1Kq71OqUd1EWMbu92O9QVbtJQJrvXAVv7DpQKaXenC+IqdXHN+cLhfmbj1enxNT8fGFq9fHqVGH+ZmhRdZ5mqU7IgSp4y+qUKMyvzhf8vt+Ur6huzhcKU1NTSWqQK+lmgwAAAADWiwxUh4eHDyTX5kaFEKNz1x7E+/Jk1OmOk1+2uatW1BhdOvNUqWnOQ1VqsaenpKVcSQJVsFK3Q+Lk3Nzo6Ny1B1+eFCfn5k7OXbs2Nxpa9eayQe2bq3F4eOgGKmV7uU8yevLk6Mk53ZMFn+3a3Ki7fa65xSfhVpJ0PwQAAACsFBeofpKcm5w8d25y9PTGTz9tnNYM0CfPtZbzLgbvrp3dXkdjdPW7U/rvUlUqpVKlUtGfpEoSqAKFbpyeHB0Vk+fOTfo9mZwMd+jc5OjpjY3To6OnN9ymuJd/aja3W3Kg0ty8cXrU7/u5SRF+jo3To0KMnj53erR5Y3NG17UQqAAAADCE4gLVfcUXkyOnNtSZoWWizgZNftHmrlpxY/TWGahKNSZQuQs1v2pVqtbd66HslCRQyXVunJo8dWpSTH5xf+PUSKBNG6dGpFWXe+heVpfvjhyoQjd+MSn3fePUiBDyU30xKeQZciEbp0ZEcOEOK+migwAAAID9IgPVy5cv7ylWJkZm1+/du7cyEY5LEyvq0v0R96MU8m/26T7MVwssFPgOVa3iLaXeucNYdebs+UBvZmfXVybExMq99dmRkdn1Vq/urUwIMbFyz7vNb5Q7q7l80v68fPnSDVSh7bUyIUZmV/wnXJkQEyuBAkLL97QR3UoS7oYAAACAnZIFKiUBeGNx94J7+/rsiBCitWTS2NCnj/w150b/KEXXlEDlr/367MjI7OyEmzJXJiZmZ0daPZEb5zVEvtB9ookKVH5a87aMl4alZ2mlLO82PwZ2u7kIVAAAABhC/TxD1Rqrq4GrOWBPlKmMHaNHBqqViWY71mdH/LNSKxMjs7MT0tmicNTsa6Bqch+zWYlfpnutNVvZMP7m6uqUFYEKAAAAQyguUP2f4vP3R/7wF+n/0g3i/c/9q3/5w4gSt+Rbu2PsGP3M2fPh/kgr6l/5/H0hhPBb9vn7wYa4tydskxyoNDc3N4X6wEoJfgUuZfN2U0nemwUAAADIVDeBKg/GjtE1gSoPbQJV5pXkvVkAAACATEUGqoODg7oBjB2jnzl7Pu/e1Ov1+sHBgRuoct9ebiV5bxYAAAAgU3GBatcAxo7Rz5w9n3dvdnd3d+VAZUIleW8WAAAAIFORgerFixc/GMDYMfqZs+fz7s0PP/zww4sXL9xAlfv2civJe7MAAAAAmYoLVDsGMHaMfubs+bx7s7OzsyMHKhMqyXuzAAAAAJlSA5U7OjdqyrdBUXJvCxMTExMTExMTExNTjpObC/RnqAAAAAAAbRGoAAAAACAhAhUAAAAAJESgAgAAAICECFQAAAAAkFDXgarRaKRckrnPbjIbO9NoNP525Jg/2dhbYxnbTGML651Rq2ZUMZ2wrmDHzpoBwGoEqgFhY2cIVEPI2GYaW1jvjFo1o4rphHUFO3bWDABWI1ANCBs7Q6AaQsY209jCemfUqhlVTCesK9ixs2YAsBqBakDY2BkC1RAytpnGFtY7o1bNqGI6YV3Bjp01A4DVCFQDwsbOEKiGkLHNNLaw3hm1akYV0wnrCnbsrBkArNZDoKpXS6JUrYeWqFW0s/ui+9eJWkVUaqnUYpZuOlOvlrRNybpXBCrHkf+O+rJdoh7EFFIzzSo1ncKMOP50vwPXqyUhRCqlWzfWt65gx86aAcBqBKoBQaAiUHkPZ/IeT6DKXrc7cKobxrqxvrJjSPLfslGsazIA2C6Fj/zZHahixhJmjf8U3QwHDQxU9f8oin9byz875RCofASqPBGoPGkewu0b63e/Y+S/Y1vXZACwnRqojl69jp8ajUabZdZmRHH5TrvHSTa1f3Z1uloWM2tdLH93qSjKa93elP8kdaZtnVELdNurPtR8Y8+5sefc2Kt/MiZOXHRaV82aut/rkk192S5G76VH3e2oA1BY1n9T7Vato2ltRhSX7hpSTO5T9ztG/js2gQoAMtZDoNpZLvpjhatl+aMQmQSqO0vjrefTlNEaEMgDmvCtyszlcuQqSCtYnCkXpUdoBkj3RdRfTHpB1T5vSp25qq7CznJRLSmq1La96n/NN/acG3u1E17NY5UTY+JfFurNMHOxIsaqq8245S8mRS9/pn+vFANVR1tZ2iE1e6k6x/876st2kQZz7qafuaq7490lzT6s/ZtKaUfttVRLCovfdlfLYnxpaSarg0NwH2tWq1a1NqPZjbMvxnt2Kd1dLXt/FLnvsa3pztK4XKqYmQkegUPrqDkgp1JzvgMLABg2aqA6PPpn/NRoNJqX7ywXxczlo38eHl0pC1Feay5wuSxEcXm73eMkm3TP7k1XymJ88Y57eWex6JZ0pewXqb1VFJd2pAfxbgpP0k1rM946Xi67M3cWi0J4Ja3NiLjnTbMzgWfZWSy3toVfUkypWdesOUPVDFHOjT3nT9PuzPonY0KIyp+8lNW8XDshSp9spX6OS+ltROukHcmbH95L4+b0Zbu05q/NCH9h3R3D+7DmbyqTHTVBqdYU1v74I8pXWruBt0C6q+bvYxF71OWyclTMrBjNH9H20nizRWszxeK4u0Czwjz2WJ9blVeMvzMEj8CBddQekFOpOd+BBQAMm34EKmlUcRi+mtZr25WyEEIegkjvrLbecN3xBzTaWzWldhao/IGIN2BS7iiPycJVpf6qL6/CtvQmblyp8b1Kp+brT95df/Lu+pP6xwVxYtW9/M0JMf7xlnuhsqzeKl1drSh1Hpuvt5bp5xTdW83AOtTS4F4anhMMVD1vl53FoiiXg2O1yD8NZR8OV5v+jpqwVFsKi992Sp7JKFD5+1jEHpVloAoUo/0jav2BXC6PL965Ui4ub/u9ymOP1cdmuQw1UCl3CR2QU6k534EFAAwbewOV/3LVfCXTP680oAnfmjxQ/XN7aby4tOO/e9rpUDutSf+qf2e56A27uxq4Z1WzLlC9W50fPzZfX50fF9PfhG8NBKrCZ6spJKh+BCp5kCftpeE5fd4uO4tFIYrjReW9Bt0dQ/twVLUp7qi9lWp+YfHbzoBApVspYwKV2xD3ghSl1paLoeiV2R7bU6DSH5BTqTnfgQUADBs1UL08fBU/NRqN5uXtpaKYuXT46uXhWlmI8mV3AXcssnS73eMkm+RnX5SesXxZKePVpbJXW7hI+VZv5tri4o70aOEpeNP2UrE4Uy4WF7elFS+vubfeXiyKuOdNszNynZdnvG0hlRRTatY1bz5+t/n43ebj+scFcXz1XfPqzc+OFSrHC+Mf3/RvFVPfuLd+NT8uRGX58bvNx98cF/69lqfcmf2flN5GbeXi4k5zMa/t4b1UN6fYz+0iP6y/b+vvqOzDmr+pTHbUBKVaU1jb4498AElr7fQHh+iVulSWduZsi9H8ER2+ur1YLBaL7p+Ge7m5WF57bHABt123F4utguXFgnfRH5BTqTnfgQUADJu+BKpXLy97Hx0pLi7OZBGoDl9dkr68L5XUmucPg6Shj3qrPLO52G33Y/K6VVBuulSWF/M+JhR4tMjnTbMzUp3+h/6L5Rl54K4rtV2vUqjZCy1fzY8LIUThs6+a6ci/3IxbU94H/KTgdPOzY625fh5LOVDpt/Lhmvx9em9+eC9V5wQDVc/bRR7AuSXNXIq+Y3Af1v1Npbij9lSqJYXFb7vcA5V+pXIKVK+i/ogCyXZ7qeg3LYc9VlJc3Ja3vv+GiHIEltZRe0BOpeZ8BxYAMGzUQHXw8ih+ajQabZdJb8r32ZXpUlkUF++0rt75Y1F8eInOdFfzd09/105L0+LYwo+tqz9+NCaOf61fMoNJ6m3OW7nvU3Afzmijm1mqsYXluGoDX8xAFuzWnO/AAgCGjRqoXhwcxk+NRqPtMulNGT775Q9FwIeXggv872JRlP/sz9n+YzG0zGB2pp81f/fwd830358dE/++5M/58aN/Fccv6JbMZJJ6m/NWDk3t9tL4Sd2HM9roSe6Yfqn9KKy3zWHaqg1BMQNZsFtzvgMLABg2BKok058/DI+WCFRJav720VtlWpwSQojj/ynP3P2ooMzJdDI4UCWfdPtwRhvdzFKNLSyXVRuSYgay4BcEKgDInBqonr94GT81Go22y6Q35fvsJk82dqbRaHz797fmTzb21tjJ2GYaW9iArZpRxQxkwW7N+Q4sAGDYqIHq2fOD+KnRaLRdJr0p32c3ebKxM41G46//eGP+ZGNvjZ2MbaaxhQ3YqhlVzEAW7Nac78ACAIYNgWpAJhs7Q6AawsnYZhpb2ICtmlHFDGTBzwhUAJA5NVA1AACAzfIdWADAsFED1d+OnPgp3yP1/v5+js9uMhs7s7+//94Fx/zJxt4ay9hmGltY74xaNaOK6YR1BTt21gwAViNQDQgbO0OgGkLGNtPYwnpn1KoZVUwnrCvYsbNmALAagWpA2NgZAtUQMraZxhbWO6NWzahiOmFdwY6dNQOA1QhUA8LGzhCohpCxzTS2sN4ZtWpGFdMJ6wp27KwZAKxGoBoQNnaGQDWEjG2msYX1zqhVM6qYTlhXsGNnzQBgtchAJYQgUFmkn52pVUSpWu/bw0UavkD12/b1Xx4GLgwdY5tpbGG9M2rVrDuGJyy4Xi2leBhtc4y2rskAYLu4QKXNVGqgqlWEEJVaRuUGXydqFdHkFlCvlqSr7rXwq06t4s/27iGktahXS8oaBRbLcHW7MBiB6sJTx3mgztncbDMn40D1/Od767u/Oc7R/Vt316/fu38g3fbol/Vbvz6PXGN1PPpw9+73Px+l011DGdtMYwvrnVGrJhfjH8G1h2ozSAWHjoz1aimqbAIVAAyTNoEqnKmkQFWvloQoVSpq/EhR8LVNjkDNi9LrTL1aEqWS+nrXzEZ+oAosXq07UYHKxBQliX0F7bL+JIEqSYvUQFVzHjx1HjjOgsmB6uDX75sjzqP7t+5u7wYHoF2ORx3n6P6t4Ih20BnbTGML651Rq6YEKlNjlC9hoEoXgQoAzKIGqht7jjvJZ2S8mTf2wh/5yzRs+K8TEa9kSqCqVJXq6tVSqVqtaAKVf18CVT6BqnLbeXDbWXgQyEumBaqHu3e3H7kXj+7furv96Oj+LelN+q7Ho47z6Jf13d+6a5zNjG2msYX1zqhVI1D1A4EKAMzSUaCSM5UpgSpwhsqnBqpa8JXHvVIb8EAlfULRbYD0oRp5VQKrFfj0TbBlyrxaRZSq1Yo0M/gU3dSsJKULNee9Tcd56lQMDVTy+/HueNRxDn79/nprkOqNRw9+/d4bcfqXdeNR/4zBUDC2mcYW1jujVi3iI3/mHl87DFTBo658dA0fML1Ha82ravKR9GTSi11zbuAxpeY1H5NABQAZ6zRQeZnKmEDlvXYEnjwcqKQXI2lO9x/58xn50h84d6eWKM3SB6pAOq1VvJd9eQDhLS19bS6uaR3V7OcWKUdtOs6FmpmBSv4ufms86n4pxZ2fYDxqzE8XZMPYZhpbWO+MWjXtWD/dLxz1pqNAFfcunPaAqXxkXfNWlPwA3mfXWxVEPWbzUQhUAJAxNVBdf/LOnZQ05c03KFB5Ty+FHE2g8l5wvNsCgSp8bsX2M1Ru0JRfn9sFKmWcIDcqqPVaLveqP4Fq4YHz4LbmslmBKvBmvD8ebX6/f/e3ROPR4foalbHNNLaw3hm1ahFjfXM//dfZGarQUVc5Q6UcMKMOuTL/DcBStV6rlKp1//kiHrOFQAUAGesoUHkzDQxUjuPI7/bpApX/mYvQeRftR+BtD1Qu+UcOewhUmkFOKoFqM3TrgoGBKuINfsdpfW5q17JzF9kztpnGFtY7o1bN5kAVOsqpVUtH3d4DVXNhKUrV5PwW95gEKgDImBqoNh+/cycvTXlz3MmUQOX/sJ8jv5LoA1XzvbvwaaxBDFT1alUNTEqgkk/PhT/yJ3/+RPkoYPT4oMdAtek4wR/323Saqcm8QBX6CkrL85/vrV+/K41Hm0v6n6eK+grK8AYqg5ppbGG9M2rVAid85AO0oXkq/PVU3Yejw0fd+EDVwUf+mkuX/IO49KO1bR6TQAUAGWsTqJQ0FQxUyr/OlEXkiPjphch/h8orSf39hXaBKvgpN2VNTXzl13/VO/CKLb1z6q6G/Iv38m9PVIMv1uqDaV/Lld+j77Tm91qf8VP++SlvzoWn0h2eOhXdnAwDVfhH0uQVOrp/6673I2nN4en1u9/v/hL3Bj+/8uc4JjTT2MJ6Z9Sq6b4Ha+YxtUkJJ/LnoJWTTKFXo5hAJR9a9T9K4S0Tfi+s7WMSqAAgY2qg+u7p7+4khPAuy1PoDFWmeJ2IYmNn9kP/sK+ZU6C3ff65tuH6ApUT+W8i9UUa/w5VX5j571D1RU//DpUVsii43x94tK7JAGC7UKB6+Hv8RKAyk42dsTJQue/c9+lsw8Nd6Z8AGg7GNtPYwnpn1KpZd6RKp2D5M+v9/8CjdU0GANupgerbR2/jJwKVmWzsjKWBCr0wtpnGFtY7o1bNqGI6kVbB0qep+/6BR+uaDAC2CwWqv7+NnwhUZrKxMwSqIWRsM40trHdGrZpRxXTCuoIdO2sGAKupgeqv/3gTPxGozGRjZwhUQ8jYZhpbWO+MWjWjiumEdQU7dtYMAFYjUA0IGztDoBpCxjbT2MJ6Z9SqGVVMJ6wr2LGzZgCwmhqoGh3YBwAApsp3YAEAw0YNVPlWAwAAAAAWIVABAAAAQEIEKgAAAABIiEAFAAAAAAkRqAAAAAAgIQIVAAAAACREoAIAAACAhAhUAAAAAJAQgQoAAAAAEiJQAQAAAEBCBCoAAAAASIhABQAAAAAJEagAAAAAICECFQAAAAAkRKACAAAAgIQIVAAAAACQEIEKAAAAABL6f3r8ZNdU+soRAAAAAElFTkSuQmCC" alt="" />

这时,我们发现了EXPLAIN。那么EXPLAIN的作用是干嘛的呢?

EXPLAIN显示了mysql如何使用索引来处理select语句以及连接表。也就是校验sql语句是否使用了索引,以及sql语句的查询效率。

EXPLAIN 列的解释

table:显示这一行的数据是关于哪张表的

type:这是重要的列,显示连接使用了何种类型。从最好到最差的连接类型为const、eq_reg、ref、range、indexhe和all

possible_keys:显示可能应用在这张表中的索引。如果为空,没有可能的索引。可以为相关的域从where语句中选择一个合适的语句

key:
实际使用的索引。如果为null,则没有使用索引。很少的情况下,mysql会选择优化不足的索引。这种情况下,可以在select语句中使用use
index(indexname)来强制使用一个索引或者用ignore index(indexname)来强制mysql忽略索引

key_len:使用的索引的长度。在不损失精确性的情况下,长度越短越好

ref:显示索引的哪一列被使用了,如果可能的话,是一个常数

rows:mysql认为必须检查的用来返回请求数据的行数

extra:关于mysql如何解析查询的额外信息。将在表4.3中讨论,但这里可以看到的坏的例子是using temporary和using filesort,意思mysql根本不能使用索引,结果是检索会很慢

EXPLAIN列的解释详细描述请查看

其中有一列需要我们特别关注的,那就是type列

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAABFwAAABjCAIAAAApeIP1AAAYAUlEQVR4nO3d72/bRp7H8flPcg/sk2X9A3qUPKwdHOxWPj1s+weskwD3wCnW9lZPAwSomyIPDrdOD5s4QfVwYXjTNgGuQIwccHXsusIhSNWiwGKzDRJv88Ox06gN9wElcjgcUqIoaobS+4VBK1GU9J0hRc1HlBzhdDzteJ0Bx3F6+S8AAAAADJnwLmUaikhEAAAAAOw0pFDkcKYIAAAAgJU4UwQAAABgrHGmCAAAAMBY04QiAAAAABgfhCIAAAAAY41QBAAAAGCsaULRcL6317sLFy9b20yPDQAAAIC08hGKTJegZ21hAAAAAHoXGYqMn4Sx/4SM8WGxs5neLAAAAEAycaHoVztYO8+2aogsKcbajQUAAABE6RKKnlvA2nn2hYuXTY/N8+fPn/8qhSIbKjG9WQAAAIBkCEX9IxRpKzG9WQAAAIBk4kJRq9V6ZoHYeXa9Kqp16XqjVgpcd5xGrSQilGqNNGN34eJl02Pz7NmzZ61Wyw1FxreXW0maIQUAAACGr0soSvXnvv/77akP/jfVIzx9+vTp05h5dqNWUoKNNhR560RddhzHqVeFEMp94124eDl979KTQ5ENlSQYQQAAAMACXULRz2Gfvi3e/tS/PPXB3fAKEbz7JRI9z/ZOE0WcDSrVGj2dKWrUSkKUqtVS4lCkH5y7H0x1evy2NBhTH9z1B89fRwTWSD4+cijS3Hz3gyl/3ANXND59u68SApX0sxsCAAAA5sSFotevXx+EXJmfmp/XzOeFEGLq/PbBwcGVeTF/RXdH7eLuoubZnZNCgVM+/Z8pchq15KFI38nt81NT57elHl+Zd4fGXWPq/PZBZx1laJUlPXn9+rUbirTb62D7/JQ/7tvnp+avbJ+fitgUmqKSV5JgBAEAAAALdAlFTxTbS4XC0ra6NGh9PurMzPx6/D31oubZVel8j/Z0UOxZJPlMkaufUKTvd6FQ8Hq8Pj+//mR9Xhq17aXC/LpuJANr9U4ORfLy7aWCcJ/IH/fOlfZtcRurj01GKAIAAEAedQlFjwPuLBVEYemOeyFkbt1da33OuyiLWNxd7G+KaklSjOY3SMEbE4cipdQ7SwUxt/74zlKhsHTn8fqcmFtaKsytP16fKyzdCa2qLtOs1Qs5FAVvWZ8ThaX1pYI/7nfkK6o7S4XC3NxcPzXIlSTZIAAAAIB5caHo6Ojoe8nNc5NCiMlzN7+P98npqNMOpz/pcletqHm2dAaoWtecD6rWY08TSWu5+glFwUrdERKnz52bnDx38/tPTovT586dPnfz5rnJUNfb6wZ1H1yNo6MjNxQp28t9ksnTpydPn9M9WfDZbp6bdLfPTbf4friV9LUfAgAAAMZ0CUXfSS7Nzl66NDt5duu777bOaibZs5c663kXg3fXLu6up3m2+lsi/W+LqtVSqVqt6k8W9ROKAoVunZ2dnBSzly7N+mMyOxseoUuzk2e3ts5OTp7dcgfFvfxde3CTkkOR5uats5P+uF+aFeHn2Do7KcTk2UtnJ9s3thckroVQBAAAgDzqEooeKD6enTizpS4MrRN1Vmb24y531YqbZ3fOBFVrMaHIXan906NSreFeD+WffkKRXOfWmdkzZ2bF7McPts5MBIZp68yE1HV5DN3L6vrJyKEodOPHs/K4b52ZEEJ+qo9nhbxALmTrzIQIrtxjJQlGEAAAALBAXCh6+fLlfcXazMTi5v3799dmwpFnZk1dezDi/tCC/LfkdF+MqwdWCvymqF711lLv3GM0unDxcmBsFhc312bEzNr9zcWJicXNzljdX5sRYmbtvnebP1Duovb6/Y7Py5cv3VAU2l5rM2Jicc1/wrUZMbMWKCC0fqqN6FbSz24IAAAAmNN3KFJm8d582r3g3r65OCGE6KzZ79R/QF+fay+N/kMLiSmhyO/95uLExOLijJsU12ZmFhcnOmMiD5w3IPKF5KkkKhT5icvbMl6ilZ6lk5S82/wol3RzEYoAAACQRwM+U9SZb6uhqT3p7isXWTvPjgxFazPt4dhcnPDPDq3NTCwuzkhnbcJxcaChqM19zHYlfpnutc5iZcP4myvRqSNCEQAAAPKoSyj6f8VHb0387s/S/6UbxFsf+Vf//LsJJTLJtyZj7Tz7wsXL4fGROupf+egtIYTwh+yjt4ID4t7e5zDJoUhzc3tTqA+slOBX4FI2b5JKTG8WAAAAIJmEocgEa+fZmlBkQpdQNPRKTG8WAAAAIJm4UHR4eNiwgLXz7AsXL5sem0aj0Tg8PHRDkfHt5VZierMAAAAAyXQJRfsWsHaefeHiZdNjs7+/vy+HIhsqMb1ZAAAAgGTiQtGLFy++sYC18+wLFy+bHptvvvnmmxcvXrihyPj2cisxvVkAAACAZLqEol0LWDvPvnDxsumx2d3d3ZVDkQ2VmN4sAAAAQDKaUOTOsK1qBgcohvFhodFoNBqNRqPRaOlb5JkiAAAAABgHhCIAAAAAY41QBAAAAGCsEYoAAAAAjDVCEQAAAICx1k8oajabWZZk9bPbLI8j02w2/3rs2N/yOLbWsnYwrS0sPau6ZlUxvchdwU4+awYAswhFoyOPI0MoGkPWDqa1haVnVdesKqYXuSvYyWfNAGAWoWh05GJkWuXySDbT45on1u6o1haWnlVds6qYXuSuYCefNQOAWYSi0ZGLkVHyw2icKSIUJWLtjmptYelZ1TWriulF7gp28lkzAJhFKBoduRgZQhGs3VGtLSw9q7pmVTG9yF3BTj5rBgCz0oWiRq0kSrVGaI16Vbt4IJIf6+tVUa1nUotdkoxMo1bSDkrmY0Uo0vBfRwPZLlEPYgtpMO0qNZvCrDj+JD9sNmolIUQmpeduvp67gp181gwAZhGKRgehiFDkPZzNezyhaPiSHjYz3TC5m68rO4bE/JaNkrtBBgDjsvn6XL5DUcx8wK45nCLJlM7CUNT4j6L4tw3z+cdAKPIRikwiFHmyPITnb76efMcwv2PnbpABwDhNKDp+9Tq+NZvNLutsLIji6r1uj9Nf6/7sartREQsbCdbfWymKykbSm8w3aWS61hm1QtKxStxa5bJS8+0D5/aBc/ug8f6UOHXF6Vy1q8XvdUqnUrSBbBer99LjZDvqCBSW+WsqYdd6ahsLoriyZ0kxxlvyHcP8jk0oAoCk0oWi3dWi/35/oyJ/rWAooejeynTn+TRldN7U5UlJ+FZl4WolsgtSB4sLlaL0CO0Q6L4R+qtJb4ra581oZG6oXdhdLaolRZXadazStohQVD/l1TxVPTUl/uV8ox1IrlTFVG29HZn81aT45C/075VhKNIMXadT8kvAnweH91J1if86Gsh2kSZk7qZfuKG7496KZh/WvqayewmnKjUnhcVvuxsVMb2ysjCsg0NwH2tXq1a1saDZjYdfjPfsUkK7UfFeFMb32E67tzItlyoWFoJH4FAfNQfkTGo2OLEAgDzShKKj41/iW7PZbF++t1oUC9eOfzk6vl4RorLRXuFaRYji6k63x+mv6Z7da9crYnr5nnt5d7nolnS94hepvVUUV3alB/FuCjfppo0Fr4/XKu7C3eWiEF5JGwsi7nmzHJnAs+wuVzrbwi8pptRsa26Vy0rNmjNF7SDk3D5w/jDvLmy8PyWEqP7BS0rty/VTovT+dubnmpSxVYauVS6rO5I3pOG9NG7JQLZLZ/nGgvBX1t0xvA9rXlND2VH7KDU3hXU//ojK9c5u4K2Qbdf8fSxij7pWUY6KQytG8yLaWZluD9HGQrE47a7QrtDEHutzq/KK8XeG4BE40EftATmTmg1OLAAgjwYUiqSZwVH4albvT9crQgh5GiF9wtn54HPXn5Rob9WU2lso8icT3qRHuaM8rwpXlfk7t9yFHenD1LhS48dqEEWGQ9GtJ29uPXlz60njvYI4te5e/uyUmH5v271QXVVvla6uV5U6Tyw1OusMskWP7e5yUbTK5dCOFJz1Bia7oSXBUJR6u+wuF0WlEpxvRb40lH04XG32O2qfpealsPhtp2SSIYUifx+L2KOGGYoCxWhfRJ0XyLXK9PK965Xi6o4/Vib2WH30lctQQ5Fyl9ABOZOaDU4sACCPch2K/Lec9ruR/nmlSUn41v5D0S87K9PFlV3/U8yYUJTZaESMjFTJvdWiN3VONPnOpubeQtGb9aXpE0uN9aVpMf9Z+NZAKCp8uJ5BChpEKJInatJeGl4y4O2yu1wUojhdVD4v0N0xtA9HVZvhjpquVPsLi992FoQiXaesCUXugLgXpDi0sVoMxaeh7bGpQpH+gJxJzQYnFgCQR5pQ9PLoVXxrNpvtyzsrRbFw9ejVy6ONihCVa+4K7nxi5etuj9Nfk599WXrGyjWljFdXK15t4SLlW72FG8vLu9KjhVvwpp2VYnGhUiwu70gdr2y4t369XBRxz5vlyMh1XlvwtoVUUkyp2dbcKpeVmr98/ObLx2++fNx4ryBOrr9pX73z4YlC9WRh+r07/q1i7jP31j8uTQtRXX385svHn50U/r1W59yFg2/K2CpD1yqX3RErLu+2V/OGPbyX6pYUB7ld5If19239HZV9WPOaGsqO2kepuSms6/FHPoBk1Tv9wSG6U1cr0s483GI0L6KjV18vF4vFovvScC+3VzO1xwZXcIfr6+Vip2B5teBd9AfkTGo2OLEAgDwaVCh69fKa9zWM4vLywjBC0dGrq9IP0qWSOsv8qYw0fVFvlRe2V/va/dq4rgvKTVcr8mreV24Cjxb5vFmOjFSn/yX4YmVBnnzrSu02VqlbdChyo44QhQ//2E44/uV2ZJrzviwnhZ87H57oLPUzVcahSBm6Tqc25N+Ie1s/vJeqS4KhKPV2kSdhbkkLV6PvGNyHda+pDHfUVKXmpLD4bWc8FOk7ZSgUvYp6EQXS6c5K0R80A3uspLi8I299/0MN5Qgs9VF7QM6kZoMTCwDII00oOnx5HN+azWbXdbJrZp9daVcrorh8r3P13u+L4p2rjExca5XLSs1f/OM3bVuZFyfOf9u5+u27U+Lkp/o1h9CksdVsZaVT+WrBfXgYre8dNetSrS3MYNdGvpiRLNit2eDEAgDySBOKXhwexbdms9l1nezaEJ/92jsi4J2rwRX+b7koKn/yl+z8vhhaZzRHpv/WKpeVmr94+Jum/c+HJ8S/r/hLvn33X8XJ/9StOZQmja1mKyudGm7rtpfGN3UfHkbrc0fNvtRBFJZuc9jWtTEoZiQLdms2OLEAgDwiFPXZ/vROeMZDKOrewqHo80e/Km15TgghTv6XvHD/3YKyZKjN4lDUf9Ptw8NofeyowynV2sKMdG1MihnJgl8QigAgOU0oev7iZXxrNptd18mumX12m1suRqZVLis1f/63X+1v8WOrdIoW36zdUa0tbMS6ZlUxI1mwW7PBiQUA5JEmFD17fhjfms1m13Wya2af3eaWi5FplctKzX/5e8v+Fj+2Sqdo8c3aHdXawkasa1YVM5IFuzUbnFgAQB4Rikan5WJkCEU0a3dUawsbsa5ZVcxIFvyMUAQAyWlCURPITKtcNl3C4I1kpwDkmsGJBQDkkSYU/fXYiW9mj7ZPnz41+Ow2y8XItMpl+Wouana61al0CvGs3ejWFpaeVV2zqphe5K5gJ581A4BZhKLRkYuRIRTB2o1ubWHpWdU1q4rpRe4KdvJZMwCYRSgaHbkYGUIRrN3o1haWnlVds6qYXuSuYCefNQOAWYSi0ZGLkSEUwdqNbm1h6VnVNauK6UXuCnbyWTMAmEUoGh25GBlCEazd6NYWlp5VXbOqmF7krmAnnzUDgFlxoUgIQSjKkUGOTL0qSrXGwB7ON/ah6OedWz8+DFwYO4Pb6AMeTGsLS8+qruXlVe/ps+BGrZTRYdRxuh6jczfIAGBcl1CkzUVqKKpXhRDV+pAqDh7r61XR5hbQqJWkq+618DtHveov9u4hpF40aiWlR4HVhtjdBEYiFDVqJWV09dtiyBtAqfP5D/c39392nOMHd/c2b90PdOrRj5t3f3oe+UjqnPLh/t5XPxxnVLad4gfzwaF023AH09rC0rOqa3Ix/hFce6i2g1Rw6MjYqJWiyiYUAUCudA9F4VwkhaJGrSREqVod4iQ1+P4kx5j2Rem9olEriVJJfc9q5xs/FAVWrzUcSybiScW+Cyasv59Q1NNTdAlFjVqpVAo+jBXbIlDn4U9ftWeNxw/u7u3s/9gql/1JZMI5peMcP7gbnJWOuvjBDIzecAfT2sLSs6prSiiyNQr5+gxF2SIUAcCAaULR7QPHbfKZEW/h7YPw1+eGOkn1j/UR70ZKKKrWaqFJdqlWq2pCkX9fKybiSY1AKHI3Rr0qP44V20Ku8+H+3s4j9+Lxg7t7O4+OW+Wy/2F54jml4zz6cXP/50zqtlL8YD64u2dqMK0tLD2rukYoGgRCEQAMWK+hSM5FtoSiwJkinxqK6sF3D/dKfcRDkfRtP3cApC+oyF0JdCvwTZbgkCnL6lVRqtWq0sLgU0QXGRuKOtsisMGs2BZSnfLn4u6c0mmVy1/d6kw0vTnl4U9febNG/7JuTul/cj8W4gfTOfzJ1GBaW1h6VnUt4utz9h5fewxFwaOufKAKHzC9R+ssq2kyjvRk0ptde2ngMaXBaz8moQgAkkoQirxcZE0o8o7/gScPhyLpDUVakvzrcz4r374D59DUEqVF+lAUSJj1qvfWLU8CvLWln5HFDZpGXCjyn0r7pLq+DItUp/z7cj8UPf/h/qa7vI85pTU/xx+O+MF03F+8mBhMawtLz6quaefr2f4AJ52eQlHcgUp7wFS+/q35OEl+AO974J0Koh6z/SiEIgBIShOKbj154zYlEXnLLQpF3tNLQUUTirw3De+2QCgKn+OwYiKelHIOLfge2y0UKe/18kAFhU7lxEwKNGJCkfyguo2o68uw+HUGPhT3Q1H7N+v7P/c1pxyvnxXFD6Z3efiDaW1h6VnVtYj5ur3fpOvtTFHoqKucKVIOmFGHXJn/IV6p1qhXS7WG/3wRj9lBKAKApHoNRd5CC0OR4zjyp276+XTnuwahUxHar4RbMRFPSv+X3MKncZKGIs1EJYtQFIpfysm9YL9sO1PkOJ3vIO3n7BzC8HU9a+E4ZgbT2sLSs6preQ5FoYOPWrV01E0firxfWXpxqC5nsLjHJBQBQFKaUPTl4zdu8yan3hK32RKK/D8450R89UouzJ1zh08njWIoatRqauhRQpF8miz89Tn5uxzK1+qi3+NThiL1B2LedSu2RXBOqflNkXv9+Q/3N2/tSXPK9pr+d5OifpIxvqEo9PuWjuEPprWFpWdV1wIfhcgHaEszUfjnmrovGoePuvGhqIevzznBv8fpXg78sDP6MQlFAJBU91CkJKJgKAr+0mYov7WJ+HMCkf9OkVeS+jcFuoWi4DfGlJ7a+O6t//ly4F1X+gTT7Yb819Tlv6dQC77hqg+mfT8OPEWUqFAU/qMZnSXdtsVQNkXsH++SO3X84O6e98e72lPMW3tf7f8Y90E7f33OccIT9OEPprWFpWdV13S/C7XzmNqmBAz5pLZysifiJLf+gCkdyfR/aMFbJ/x5VtfHJBQBQFKaUPTFP35zmxDCuyy30JmioeJYHyUXI9PtH2+1VKDO0N/aUjqV0Hj9oMjpNpjpZPHvFA2Enf9O0UCk+neKcmEYBQ/6y4O5G2QAME4Xih7+Ft8IRXbKxciMQihyP0GXPhpPE4oe7kv/RMx4iB/MNFIOprWFpWdV1/LyqvdkU7D8/e/Bf3kwd4MMAMZpQtHnj36Nb4QiO+ViZEYjFCnSnSkaO9ZudGsLS8+qrllVTC+yKlj6IvDAvzyYu0EGAON0oehvv8Y3QpGdcjEyhCJYu9GtLSw9q7pmVTG9yF3BTj5rBgCzNKHoL39vxTdCkZ1yMTKEIli70a0tLD2rumZVMb3IXcFOPmsGALMIRaMjFyNDKIK1G93awtKzqmtWFdOL3BXs5LNmADBLE4qaPXgK9KVVLpsuYfBGslMAcs3gxAIA8kgTigxWg5E3kidVRrJTAAAA44NQhKFqlcsj2UyPKwAAAPpHKAIAAAAw1ghFAAAAAMYaoQgAAADAWCMUAQAAABhrhCIAAAAAY41QBAAAAGCsEYoAAAAAjDVCEQAAAICxRigCAAAAMNYIRQAAAADGGqEIAAAAwFgjFAEAAAAYa4QiAAAAAGONUAQAAABgrBGKAAAAAIy1fwLadp5oPLmNUgAAAABJRU5ErkJggg==" alt="" />

Explain的type显示的是访问类型,是较为重要的一个指标,结果值从好到坏依次是:
system > const > eq_ref > ref > fulltext > ref_or_null > index_merge > unique_subquery > index_subquery > range > index > ALL
一般来说,得保证查询至少达到range级别,最好能达到ref,否则就可能会出现性能问题。

type:ALL 表示全表查询,这在sql查询中是杜绝的。那怎么优化type至少达到ref呢?

很简单,加索引

ALTER TABLE student ADD INDEX student_stuAge ( `stu_age`)

加完索引之后,在执行
EXPLAIN SELECT * FROM student WHERE stu_age=18

我们发现:

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAABGoAAABkCAIAAABRkEEyAAAWkUlEQVR4nO3dX2/bVprH8fNOZi/stRW9h+ll7VzYrQzdzhsYJwH2winG9lS3AQLUTZG7dbqYxA1WlwPDkzbpRYEYXmDrPzWEhZGqRYHBZBo4mSaO/6RJau4FJfKQPKRISSSfo3w/OJiRKcr68SElnSekXPW863U+HMdJ/l8AAAAAsILKtX1yevVOdFAAAAAAbJFv+0TvBAAAAGBkcPYJAAAAAFLh7BMAAAAApMLZJwAAAABIhbNPAAAAAJAKZ58AAAAAIBW/fQIAAAAAJKB9AgAAAIBUaJ8AAAAAIBW/fSr7MsKwa9dvih1l1wYAAABACUS3T2VHMBMbDAAAAECuwu1T6Sd25J/kKb0sMkfZuwUAAADInaF9eiuD2Bm5qBIJCSN2ZwEAAABDZG6fjgQQOyO/dv1m2bU5Ojo6equ1TxKSlL1bAAAAgNzRPmVG+2RMUvZuAQAAAHJnaJ/evHnzQoDEGXmzrupN7edWoxr42XFajaqKUW20BinZtes3y67NixcvXrx588Ztn0rfX26SQUoKAAAAWMHcPg30t9D/64PJj/5noN/w/Pnz588TZuStRjXUAhnbJ2+duNuO4zjNulIq9Nhk167fHHzrBqe3TxKSZKggAAAAYCdz+/RL1OcfqA8+929PfrQVXSGG97hM4mfk3qmnmDNM1UYr1dmnVqOqVLVer2Zun8zF2fposrvFH2jFmPxoyy+ev44KrJG9Pnr7ZLh766NJv+6BHww+/6CvCIEkAxyEAAAAgB0M7dPr16+fRdyanZydNcz8lVJq8urms2fPbs2q2VumBxoX9xY3I++eaAqcRur/7JPTamRvn8wbuXl1cvLqprbFt2bd0rhrTF7dfNZdJ1Ta0JJUXr9+7bZPxv31bPPqpF/3zauTs7c2r07G7ApDqOxJMlQQAAAAsJO5fXoasrkwMbGwGV4atDobd7ZndjX5kWZxM/K6dg7JeIop8cyUfvbJ1U/7ZN7uiYkJb4tXZ2dXn67OalXbXJiYXTVVMrBWenr7pC/fXJhQ7hP5de/+0LkvaWf1sctonwAAAPCOMLdPhwEPFybUxMJD90bEzKq71uqMd1MXs7i3xO8+NbL0O4bvSgXvzNw+haI+XJhQM6uHDxcmJhYeHq7OqJmFhYmZ1cPVmYmFh5FVw8sMa6Wht0/Be1Zn1MTC6sKEX/eH+g9hDxcmJmZmZvrJoCfJskMAAAAAKxnap9PT0x80966MK6XGr9z7IdlnF+NOZVz8rMdDjeJm5NpZpXrTcI6p3kw89aSt5eqnfQomdSukLl65Mj5+5d4Pn11UF69cuXjl3r0r45FN76wb1Lu4Bqenp277FNpf7pOMX7w4fvGK6cmCz3bvyri7f+654fvhJhnkKAQAAACsYG6fvtfcmJ6+cWN6/PLG999vXDZMx6dvdNfzbgYfblzcW6oZefg7T+bvQNXr1Wq9XjefgOqnfQoE3bg8PT6upm/cmPZrMj0drdCN6fHLGxuXx8cvb7hFcW9/3yluVnr7ZLh74/K4X/cb0yr6HBuXx5Uav3zj8njnzs6CzFlonwAAAPCOMLdPj0I+nR67tBFeGFkn7kzP9Kc9HmqUNCPvnl2qNxLaJ3elzlekqo2W+3OkU+qnfdJzblyavnRpWk1/+mjj0ligTBuXxrRN12vo3g6vn43ePkXu/HRar/vGpTGl9Kf6dFrpC/QgG5fGVHDllEkyVBAAAACwk6F9Ojk5OQhZmRqbXz84OFiZijZHUyvhtYcj6U9H6H9Hz3RZXjOwUuC7T826t1b4wSmbqGvXbwZqMz+/vjKlplYO1ufHxubXu7U6WJlSamrlwLvPL5S7qLN+v/U5OTlx26fI/lqZUmPzK/4TrkypqZVAgMj6A+1EN8kAByEAAABgh6ztU2i+78283Rvu/evzY0qp7pr9NglDunivszT+T0dkFmqf/K1fnx8bm5+fcnvKlamp+fmxbk30wnkF0W9k71/i2ie/N/P2jNf7as/S7am8+/ymL+vuon0CAADAO2I4Z5+6M/Nwe9WZnvfVQYmdkce2TytTnXKsz4/5Z5xWpsbm56e0M0HRxnKo7VOH+zs7SfyY7k/dxaEd4++uTKejaJ8AAADwjjC3T/8X8sn7Y3/8q/b/2h3q/U/8H//6x7FQc6Xfm43YGfm16zej9dE21P/hk/eVUsov2SfvBwvi3t9nmfT2yXB3Z1eEf3Eogp/AFdq9WZKUvVsAAACA3KVrn8ogdkZuaJ/K0KN9KjxJ2bsFAAAAyJ2hfTo+Pm4JIHZGfu36zbJr02q1WsfHx277VPr+cpOUvVsAAACA3Jnbp30BxM7Ir12/WXZt9vf39/X2SUKSsncLAAAAkDtD+/Ty5cvvBBA7I792/WbZtfnuu+++e/nypds+lb6/3CRl7xYAAAAgd+b2aVcAsTPya9dvll2b3d3dXb19kpCk7N0CAAAA5M5vn9y5uKhRdnHMSi8Lg8FgMBgMBoPBKGWEzz4BAAAAAIxonwAAAAAgFdonAAAAAEiF9gkAAAAAUqF9AgAAAIBUMrRP7Xb772dOWaPdbhdQDhvZWBlbMtuS0wpiiyk22OBEbZqoMGlYF9ixMzMAWIf2yXo2VsaWzLbktILYYooNNjhRmyYqTBrWBXbszAwA1qF9sp6NlbElsy05rSC2mGKDDU7UpokKk4Z1gR07MwOAdWifrGdjZWzJbEtOK4gtpthggxO1aaLCpGFdYMfOzABgHdon69lYGVsy25LTCmKLKTbY4ERtmqgwaVgX2LEzMwBYp6/2aafx76r6HzuRJmetriqNr6W0T826qjf7q4pVslSm1agai1J0rWz5jM83Z6tRVdVGyxnSfon7JVJoxZQVNZ9gIt5/sh/ArUZVKZVLdFte9R7rAjt2ZgYA69A+WY/2KT+0T0NE+1S8rAdwrjvGlle9J3RgaMrfs3GsKzIA2GioF+/Z3T4lzBxkzfZCskz+BLZPttQ2V7RPZaJ98jTrnYZeQpjSZT8wyj+wrSsyANjIb5/OXr1OHu12++tnTtK4VVeTjdXkdfod7Xa7Z8LguFtTc2sZ1t9bqqjaWta7yh9aZXrmjFsha62KzCyktrmOoewX0ZU8E7zT8wlW9Guq16alGmtzqrK0JyRM6SP7gVH+gU37BAAF6Kt92mz8m6r/udPYNN/TL2oopH3aWbrQfT5vgnK31l3U/fjXpy/Re0MLl73bqrK8E9jwu9pdc7WK9hvW5lRleafzkemvpn18Gp83p8/4u+FN2F2uhCPFRe1ZqwIyS65tQumCW6HNmKNHaXjJ7nKlc9dQ9os2dXN3/dxd0wP3lgx1Nr6m8i5mn1EtCZa87+7W1IWlpblyDuBO2nCqtTnDYVx8GO/ZtV7ubs17UZR+xHbHztIFPaqamwu+A0e20fCGnEvmsicVADD6/Pbp9OzX5GFqn5rvKfXerU6H8+fZfNunTpKd5YqauxPI9kVNXVjccW/vLlZUbc1d6K4Wd6+qLO1qv8S7Kzq0u9bmVGV5++zX07Nf79TchbuLFaW8SGtzKul5hz/8ygSeZXex1smpRUqIKiCz+NrGJNEOJG959ChNWjKU/dJdvjan/JVND4zW2fCaKmSn9xHVmmC9339U7YvuYeCtkO+m+cdYzBF1pxZ6VywsjOFFtL10oVOitblK5YK7QidhGUesz03lhfEPhuA7cGAbjW/IuWQue1IBAKMvW/v04On5g6fnDzY//p2qLz89f7BaVxMfr7oLoz8OdWifZF/UlFL6hEP7V9PuP6bu+tMX473a7Ef/gOzdPvnTDm96FHqgPgOLpsr9M17fhG3tH2iToibXqrjMFtXWMI2OlDR4lEaXBNungffL7mJF1WrBmVnsSyNU52ja/IvZZ1RbgiXvu1D3UlD75B9jMUdUke1TIIzxRdR9gdypXVjc+aJWWd72a1XGEWtukvUY4fYp9JDIG3IumcueVADA6LOxffI/nDqfW4Ze6NfA9CV6b//t06/bSxcqS7v+v4ymnVgX+xm/s1zxJtmZpuklZraltklJQlNh7SiNLhnyftldrChVuVAJ/cuC6YGROselzbGYg0WVHyx53wlon0wbJaZ9cgvi3tAap7XlSqTRKuyIHah9Mr8h55K57EkFAIw+v306OX2VPNrt9v3D8/uH5/cffvw7VV8+PL9/+N+/V+r3q+f3D8/vH7b+MKHUxMf/6a4z7NFutztJtpcW77iRdhcrqnbn1cnpWk25N16dnL66XZu7feou9G4Y7/UWri0u7mq/LTqCd20vVSpztUplcdu/V9XW3Hu/XayopOcd/vAro+e8M6cqS9+GIyVEFZBZfG3jklQWdzureWWPHqWmJZVh7hf91/rHtvmBoTobXlOF7PQ+oloTrOf7j36Q57V1sS+0mI26XdMO5mLDGF5Ep6++XaxUKhX3peHe7qxW1hEbXMEt17eLlW5gfbXgQ8xvyLlkLntSAQCjb8D26fz+ar17NcKFPyzUi2ifTl/d1r5i31m4veR/K9ef9GgTnfC9+sLOat+6l7d3P+T0Ebrrdk1fzbvgJ/DbYp83x894Pad/sX6lNqdP001Re9WqoMySaxuf5HRN/9a7tzx6lIaXBNungfeLPl1zI83djn9gsM6m11Texew3qiXBkvdd6e2TeaNKap9exb2IAn3s9lLFL1oJR6ymsrit733/nz9C78DaNhrfkHPJXPakAgBGn98+HZ+cJY92u/3Vv34ra7Tb7Z4JCxu3a6qyuNP9cedPFfXh7dLCiKrM4Jml1rbkJEMfwToXXExZUcUGK3HTRj7MSAZ2M5c9qQCA0ee3Ty+PT5NHu93+6vFvZY12u90z4ZDGnQ9VwIe3gyv872JF1f7iL9n+UyWyToGjwMrkn1lubUtOEhm9jtLkEa5zwcWUFXUYwQbbHdI27R0IM5KB3cxlTyoAYPRla5++fPK2rCHkk+wvH0bnRnKm+NYMY2bZtZXWPvU/THUuuJiyoooNVsqmvSNhRjLwS9onACiE3z4dvTxJHu12+8t/vC1rtNvtngnfzWFjZWzJbEtOK4bYYooNNmKbJirMSAZ2M5c9qQCA0ee3Ty+OjpNHu93+2z/flDXa7XbPhO/msLEytmS2JacVQ2wxxQYbsU0TFWYkA7uZy55UAMDoo32yfthYGVsy25LTiiG2mGKDjdimiQozkoFf0D4BQCH89qkNAABsVvakAgBGn98+/f3MSR7lvi8/f/68xGeXzMbK2JLZlpxWEFtMscEGJ2rTRIVJw7rAjp2ZAcA6tE/Ws7EytmS2JacVxBZTbLDBido0UWHSsC6wY2dmALAO7ZP1bKyMLZltyWkFscUUG2xwojZNVJg0rAvs2JkZAKxD+2Q9GytjS2ZbclpBbDHFBhucqE0TFSYN6wI7dmYGAOvQPlnPxsrYktmWnFYQW0yxwQYnatNEhUnDusCOnZkBwDqG9kkpRftkkWFWpllX1UZraL8uVvbMrUZVKaXqzVzyxLGxtmKJLeYIv7eI2jRRYdIYXuBfth/89DhwIy/WFRkAbGRun4wdVLh9ataLnM4GPxWaddXhBuhMrjs/uj9Fp1fNur/Ye4Q+KW81qqEtCqxW+Ow9FbGz0gRZM0d3TDFsrG0vrUa1nANZbDEDwbRXvMRXe0aiJtPhMMV+gvQhFPjox4P1/V8c5+zR1t76g4NHx9p9T35a3/r5KPY3hdunx/t73/x4VkBmAEAeYtunaAeltU+tRlWpar1e4JxW+1Ro1gMNT+emNqFqNaqqWq2G5ledeZHfPgVWb7ScuPZJ8ge80+PzMmP+fmal/ZQo62d8Wa2HVbVNt3KrUa1WSzmoxRYz8N7i/VoLXvq95TmZzlwgLUwJnyB9CFTv+OdvOg3S2aOtve39YL+UsX1ynLNHW8EGLI/MAIB8+O3T188cd+hnW7yFXz+LXrxX6PzC/1TQGh9dqH2qN0LpWo1qtdGoG9on/7G0T7RPAVbVNtXK7nHfrJdwVIstZkywmDcaq0htn/r8DQXTAz/e39t+4t48e7S1t/3k7NGWdgYpc/vkOE9+Wt//JdfMAICc9Gif9A5KSvsUOPvkC7dPzeAUy/2hOeLtU/DKI/8SR1VttPRNCWyWtlrgmkd/eXdZs66qjUZdWxh8in4yu1H06yrDz6s9R9G7QnJt+8rTPezD7Yf3cP2fGIw5R7CYMTPOUnrMIYu75lkrVPTFFa2e4yTvsn7COPLfXbXA+skit31ynOOfv3nQ7am89un452+8Bsm/bWqf/NNZOWUGAOSld/ukuh2UmPbJ+9APPHm0fdL6LG1J9ov3DBMMSQLn5cIRtUXmWWmgF23W9R4mehmT9mWFpKJlydypcHDqFrl8qvyzT9Jq208e/Zn1DKGrYZNz9k9sMY0zTilfVRtM6F+dglsUXOIX2FS95F2WOUyfv6FgWmD9Tz502yf321Du8j7ap3z+jATtEwAUwG+fHjw9d0eod/KWC2qfvKfXJt6G9sn78PfuC7RP0X8+tf3sk9tW6nOkXrPS0CRRL1RQ5JyF138OoX3yH25+XgHtk7jaZs8T6ZkMDUjvnP0TW8zoe4v5BLeF/E2LvoTCS4y19qqXuMuyhun3NxTMDxw4U+S3T50/I7H/S1/tUy5ff6J9AoAC9GifvIUC2yfHcUL/ZBppn/zrUCIzReMXG2xvn1wt7Q8PDjArNUyWC2mfenyxrVDia5slT7TV6Cdn/8QWMxRsZHonJ3P7FK1p6H0yZpdlDaP9NsmV7nn2yXG6l/Dtc/YJAN4hfvt0//DcHd7cylviDintU8v7Y3tOzL+hhy5XMp6iGsX2qdVohGedoVmpfuotek1U6MIt/Vqp6DV0+bRP5ucV0D5Jq20fecJtgfdzppz9E1vM0NE4AtfseWK+MtpsdL8PFrh4z3w9ZOfivaRdljlM6FcJFWyfIt996jr68WD9wZ7WPnXW9C/ti/vuE+0TANgptn0K9U7B9km/8k3vTnIU871z7RJ9/8fAp3LghxTtU/AyoNCWSpxZ6ZXxzy8EZprK//6Cuxn6XwzWv0/eCE6cwr/M/M/S+lNkzxyZQhmeV0D7JK+2WfNET6oEvxuYMucIFjNwiiZA4us9k8Bk2i9U4Etkia82v3rJuyxjmBI+QfqQ+Jf39BXPHm3teX95r9NNPdj7Zv+npLNP/OU9ALCW3z599a/f3KGU8m7rI3L2qVB8KsSxsTK2ZLYl5zDl1qqKLabYYIMTtWmiwqQRCDzkP5THf/cJACymtU+Pf0setE8y2VgZWzKLyRk+LTLUf63XL4eN/n22oRFbTDHBhk/UpokKk0Yo8NGPB8M6X/R4X/tvRg2VdUUGABv57dOXT94mD9onmWysjC2Zbck5KO1aqvyuVxNbTLHBBidq00SFScO6wI6dmQHAOlr79I+3yYP2SSYbK2NLZltyWkFsMcUGG5yoTRMVJg3rAjt2ZgYA6/jt09/++SZ50D7JZGNlbMlsS04riC2m2GCDE7VposKkYV1gx87MAGAd2ifr2VgZWzLbktMKYospNtjgRG2aqDBpWBfYsTMzAFjHb5/aKTwHAABSlT2pAIDRp3jPBQAAAIA0aJ8AAAAAIBXaJwAAAABIhfYJAAAAAFKhfQIAAACAVGifAAAAACAV2icAAAAASIX2CQAAAABSoX0CAAAAgFRonwAAAAAgFdonAAAAAEiF9gkAAAAAUqF9AgAAAIBUaJ8AAAAAIBXaJwAAAABI5f8BxWXHNmDHn8AAAAAASUVORK5CYII=" alt="" />

type类型达到ref。这时的sql语句效率就比较高了。

只是针对索引方面的sql优化,希望对你有帮助!也欢迎大家多提提意见

Mysql语句查询优化的更多相关文章

  1. 《MySQL慢查询优化》之SQL语句及索引优化

    1.慢查询优化方式 服务器硬件升级优化 Mysql服务器软件优化 数据库表结构优化 SQL语句及索引优化 本文重点关注于SQL语句及索引优化,关于其他优化方式以及索引原理等,请关注本人<MySQ ...

  2. php mysql 一个查询优化的简单例子

    PHP+Mysql是一个最经常使用的黄金搭档,它们俩配合使用,能够发挥出最佳性能,当然,如果配合Apache使用,就更加Perfect了. 因此,需要做好对mysql的查询优化.下面通过一个简单的例子 ...

  3. WebAPI调用笔记 ASP.NET CORE 学习之自定义异常处理 MySQL数据库查询优化建议 .NET操作XML文件之泛型集合的序列化与反序列化 Asp.Net Core 轻松学-多线程之Task快速上手 Asp.Net Core 轻松学-多线程之Task(补充)

    WebAPI调用笔记   前言 即时通信项目中初次调用OA接口遇到了一些问题,因为本人从业后几乎一直做CS端项目,一个简单的WebAPI调用居然浪费了不少时间,特此记录. 接口描述 首先说明一下,基于 ...

  4. MySQL in查询优化

    https://blog.csdn.net/gua___gua/article/details/47401621 MySQL in查询优化<一> 原创 2015年08月10日 17:57: ...

  5. 查询优化 | MySQL慢查询优化

    ​Explain查询:rows,定位性能瓶颈. 只需要一行数据时,使用LIMIT1. 在搜索字段上建立索引. 使用ENUM而非VARCHAR. 选择区分度高的列作为索引. 采用扩展索引,而不是新建索引 ...

  6. MySQL 慢查询优化

    为什么查询速度会慢 1.慢是指一个查询的响应时间长.一个查询的过程: 客户端发送一条查询给服务器 服务器端先检查查询缓存,如果命中了缓存,则立可返回存储在缓存中的结果.否则进入下一个阶段 服务器端进行 ...

  7. MySQL 语句执行过程详解

    MySQL 原理篇 MySQL 索引机制 MySQL 体系结构及存储引擎 MySQL 语句执行过程详解 MySQL 执行计划详解 MySQL InnoDB 缓冲池 MySQL InnoDB 事务 My ...

  8. MySQL SQL查询优化技巧详解

    MySQL SQL查询优化技巧详解 本文总结了30个mysql千万级大数据SQL查询优化技巧,特别适合大数据里的MYSQL使用. 1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 ...

  9. 关于mysql的查询优化

    由于工作原因,最近甲方客户那边多次反应了他们那边的系统查询速度慢,经过排除之后,发现他们那边的数据库完全没有用到索引,简直坑得一笔,通过慢查询日志分析,为数据表建立了适当的索引之后,查询速度明显的提高 ...

随机推荐

  1. 【广告】win10 uwp 水印图床 含代码

    本文主要是广告我的软件. 图床可以加速大家写博客上传图片的时间,通过简化我们的操作来得到加速. 在写博客的时候,我们发现,我们需要上传一张图片,需要先打开图片,然后选择本地图片,然后上传. 但是我经常 ...

  2. eclipse环境下,java操作MySQL的简单演示

    首先先通过power shell 进入MySQL 查看现在数据库的状态(博主是win10系统) 右键开始,选择Windows powershell ,输入MySQL -u用户名 -p密码 选择数据库( ...

  3. 《剑指Offer》附加题_用两个队列实现一个栈_C++版

    在<剑指Offer>中,在栈和队列习题中,作者留下来一道题目供读者自己实现,即"用两个队列实现一个栈". 在计算机数据结构中,栈的特点是后进先出,即最后被压入(push ...

  4. ASP.NET MVC @Html.Label的问题

    在使用@Html.Lable()来显示Model的某一个字符串属性时,如果该字符串中包含".",那么就会在最终呈现时被截掉开头至"."位置的字符.什么原因尚不清 ...

  5. LeetCode 190. Reverse Bits (反转位)

    Reverse bits of a given 32 bits unsigned integer. For example, given input 43261596 (represented in ...

  6. javascript的一些算法的实用小技巧

    一.交换两个数字的值 我们交换两个数字的值想到的方法一般就是用一个新的变变量,让他把一个数存起来,然后在交换两个数字的值,看下面这种. var a = 1, b = 2; //交换两个数字的值 var ...

  7. Charles从入门到放弃

    Charles版本:4.0.2 一.开始 连接方式 方法一:电脑和手机连接同一个wifi 方法二:电脑使用网线连接网络,手机通过USB连接电脑 二.过滤网络请求 1.简单过滤 在Sequence模式下 ...

  8. 直方图均衡化C++实现

    直方图均衡化在图像增强方面有着很重要的应用.一些拍摄得到的图片,我们从其直方图可以看出,它的分布是集中于某些灰度区间,这导致人在视觉上感觉这张图的对比度不高.所以,对于这类图像,我们可以通过直方图均衡 ...

  9. webpack安装教程及实例

    在控制台输入: npm install webpack -g 这是全局的安装,如果需要局部安装,在控制台cd 打开到指定目录,输入: npm install webpack --save-dev 即可 ...

  10. Spring容器组建注解@Component和Resouces实现完全注解配置

    @Resource和@Component实现零XML配置 1.@Resource的注解: @Resource是J2EE的注解.意思是说在容器里面找相应的资源.也可以通过name属性指定它name的资源 ...