其实对Mysql查询语句进行优化是一件非常有必要的事情。

如何查看当前sql语句的执行效率呢?

1.建一张学生表

 CREATE TABLE `student` (
`stu_id` int(11) NOT NULL AUTO_INCREMENT COMMENT '学号(主键id)',
`stu_name` varchar(255) COLLATE utf8mb4_bin DEFAULT NULL COMMENT '学生姓名',
`stu_age` tinyint(4) DEFAULT NULL COMMENT '学生年龄',
PRIMARY KEY (`stu_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_bin COMMENT='学生表';

2.加入几条测试数据

 INSERT INTO `test`.`Student` (`stu_id`, `stu_name`, `stu_age`) VALUES ('', '岳云鹏', '');
INSERT INTO `test`.`Student` (`stu_id`, `stu_name`, `stu_age`) VALUES ('', '薛之谦', '');
INSERT INTO `test`.`Student` (`stu_id`, `stu_name`, `stu_age`) VALUES ('', '郭德纲', '');
INSERT INTO `test`.`Student` (`stu_id`, `stu_name`, `stu_age`) VALUES ('', '范冰冰', '');
INSERT INTO `test`.`Student` (`stu_id`, `stu_name`, `stu_age`) VALUES ('', '李晨', '');

3.加入查询语句

EXPLAIN

SELECT * FROM student WHERE stu_age=18

我们可以看到结果如下:

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAABHAAAABnCAIAAADniCK9AAAXiElEQVR4nO3d0W8T55rH8fc/YS+SdRxf9h4um6BV0jrry7Z/wAlE2oukOklOfYuE1JSKC7QNXR0IqL48inJoA9JWImKlJYSm1gpRU1U6OpwiCA0QEg5QZi/GnnnnnXfG9tgz877296NRa4/H9jPPTMbvz2Mb4TiO4zj7La9T4DhOJ/8FAAAAALsI93+pBirSFAAAAICBlEWgcjhDBQAAAGAQcYYKAAAAABLiDBUAAAAAJMQZKgAAAABIiDNUAAAAAJAQZ6gAAAAAICHOUAEAAABAQmqgAgAAAAB0iEAFAAAAAAkRqAAAAAAgITVQZf+hw3hnzp43dsq7NwAAAAByZkGgyrsEPWMLAwAAAJAZfaDK/eSP+SeCcm+LmVPemwUAAADIVGSgemsGY8foRrXIkGKM3VgAAABASuIC1XMDGDtGP3P2fN69ef78+fO3UqAyoZK8NwsAAACQKQJVQgQqbSV5bxYAAAAgU5GB6s2bN88MEDtGr1VEpSZdr1dLgeuOU6+WRIRStd5L486cPZ93b549e/bszZs3bqDKfXu5lfTSUgAAAMA6cYGqp99j/68Pxj79n54eYX9/f38/Zoxer5aUUKQNVN4yUZcdx3FqFSGEct94Z86e733teicHKhMq6aKDAAAAgP3iAtVvYV9/ID742r889umt8AIRvPt1JXqM7p2eijgLVarWOzpDVa+WhChVKqWuA5W+Obc+HWut8QdSM8Y+veU3z19GBJbovj9yoNLcfOvTMb/vgSsaX3+QqIRAJQl3QwAAAMBOkYHq9evXeyEXp8empzVZQAghxha29vb2Lk6L6Yu6O2pntxc1Rm+djAqcakp+hsqpV7sPVPqV3FoYG1vYktb44rTbGneJsYWtvdYySmuVOR15/fq1G6i022tva2HM7/vWwtj0xa2FsYhNoSmq+0q66CAAAABgv7hA9USxNV8ozG+pc4NWp6POCE2vxt9TL2qMXpHOM2lPQ8WevZLPULmSBCr9ehcKBW+NV6enV5+sTktd25ovTK/qOhlYqnNyoJLnb80XhPtEft9bV5q3xW2sBJuMQAUAAIAhFBeoHgfcnC+IwvxN90LI1Kq71OqUd1EWMbu92O9QVbtJQJrvXAVv7DpQKaXenC+IqdXHN+cLhfmbj1enxNT8fGFq9fHqVGH+ZmhRdZ5mqU7IgSp4y+qUKMyvzhf8vt+Ur6huzhcKU1NTSWqQK+lmgwAAAADWiwxUh4eHDyTX5kaFEKNz1x7E+/Jk1OmOk1+2uatW1BhdOvNUqWnOQ1VqsaenpKVcSQJVsFK3Q+Lk3Nzo6Ny1B1+eFCfn5k7OXbs2Nxpa9eayQe2bq3F4eOgGKmV7uU8yevLk6Mk53ZMFn+3a3Ki7fa65xSfhVpJ0PwQAAACsFBeofpKcm5w8d25y9PTGTz9tnNYM0CfPtZbzLgbvrp3dXkdjdPW7U/rvUlUqpVKlUtGfpEoSqAKFbpyeHB0Vk+fOTfo9mZwMd+jc5OjpjY3To6OnN9ymuJd/aja3W3Kg0ty8cXrU7/u5SRF+jo3To0KMnj53erR5Y3NG17UQqAAAADCE4gLVfcUXkyOnNtSZoWWizgZNftHmrlpxY/TWGahKNSZQuQs1v2pVqtbd66HslCRQyXVunJo8dWpSTH5xf+PUSKBNG6dGpFWXe+heVpfvjhyoQjd+MSn3fePUiBDyU30xKeQZciEbp0ZEcOEOK+migwAAAID9IgPVy5cv7ylWJkZm1+/du7cyEY5LEyvq0v0R96MU8m/26T7MVwssFPgOVa3iLaXeucNYdebs+UBvZmfXVybExMq99dmRkdn1Vq/urUwIMbFyz7vNb5Q7q7l80v68fPnSDVSh7bUyIUZmV/wnXJkQEyuBAkLL97QR3UoS7oYAAACAnZIFKiUBeGNx94J7+/rsiBCitWTS2NCnj/w150b/KEXXlEDlr/367MjI7OyEmzJXJiZmZ0daPZEb5zVEvtB9ookKVH5a87aMl4alZ2mlLO82PwZ2u7kIVAAAABhC/TxD1Rqrq4GrOWBPlKmMHaNHBqqViWY71mdH/LNSKxMjs7MT0tmicNTsa6Bqch+zWYlfpnutNVvZMP7m6uqUFYEKAAAAQyguUP2f4vP3R/7wF+n/0g3i/c/9q3/5w4gSt+Rbu2PsGP3M2fPh/kgr6l/5/H0hhPBb9vn7wYa4tydskxyoNDc3N4X6wEoJfgUuZfN2U0nemwUAAADIVDeBKg/GjtE1gSoPbQJV5pXkvVkAAACATEUGqoODg7oBjB2jnzl7Pu/e1Ov1+sHBgRuoct9ebiV5bxYAAAAgU3GBatcAxo7Rz5w9n3dvdnd3d+VAZUIleW8WAAAAIFORgerFixc/GMDYMfqZs+fz7s0PP/zww4sXL9xAlfv2civJe7MAAAAAmYoLVDsGMHaMfubs+bx7s7OzsyMHKhMqyXuzAAAAAJlSA5U7OjdqyrdBUXJvCxMTExMTExMTExNTjpObC/RnqAAAAAAAbRGoAAAAACAhAhUAAAAAJESgAgAAAICECFQAAAAAkFDXgarRaKRckrnPbjIbO9NoNP525Jg/2dhbYxnbTGML651Rq2ZUMZ2wrmDHzpoBwGoEqgFhY2cIVEPI2GYaW1jvjFo1o4rphHUFO3bWDABWI1ANCBs7Q6AaQsY209jCemfUqhlVTCesK9ixs2YAsBqBakDY2BkC1RAytpnGFtY7o1bNqGI6YV3Bjp01A4DVCFQDwsbOEKiGkLHNNLaw3hm1akYV0wnrCnbsrBkArNZDoKpXS6JUrYeWqFW0s/ui+9eJWkVUaqnUYpZuOlOvlrRNybpXBCrHkf+O+rJdoh7EFFIzzSo1ncKMOP50vwPXqyUhRCqlWzfWt65gx86aAcBqBKoBQaAiUHkPZ/IeT6DKXrc7cKobxrqxvrJjSPLfslGsazIA2C6Fj/zZHahixhJmjf8U3QwHDQxU9f8oin9byz875RCofASqPBGoPGkewu0b63e/Y+S/Y1vXZACwnRqojl69jp8ajUabZdZmRHH5TrvHSTa1f3Z1uloWM2tdLH93qSjKa93elP8kdaZtnVELdNurPtR8Y8+5sefc2Kt/MiZOXHRaV82aut/rkk192S5G76VH3e2oA1BY1n9T7Vato2ltRhSX7hpSTO5T9ztG/js2gQoAMtZDoNpZLvpjhatl+aMQmQSqO0vjrefTlNEaEMgDmvCtyszlcuQqSCtYnCkXpUdoBkj3RdRfTHpB1T5vSp25qq7CznJRLSmq1La96n/NN/acG3u1E17NY5UTY+JfFurNMHOxIsaqq8245S8mRS9/pn+vFANVR1tZ2iE1e6k6x/876st2kQZz7qafuaq7490lzT6s/ZtKaUfttVRLCovfdlfLYnxpaSarg0NwH2tWq1a1NqPZjbMvxnt2Kd1dLXt/FLnvsa3pztK4XKqYmQkegUPrqDkgp1JzvgMLABg2aqA6PPpn/NRoNJqX7ywXxczlo38eHl0pC1Feay5wuSxEcXm73eMkm3TP7k1XymJ88Y57eWex6JZ0pewXqb1VFJd2pAfxbgpP0k1rM946Xi67M3cWi0J4Ja3NiLjnTbMzgWfZWSy3toVfUkypWdesOUPVDFHOjT3nT9PuzPonY0KIyp+8lNW8XDshSp9spX6OS+ltROukHcmbH95L4+b0Zbu05q/NCH9h3R3D+7DmbyqTHTVBqdYU1v74I8pXWruBt0C6q+bvYxF71OWyclTMrBjNH9H20nizRWszxeK4u0Czwjz2WJ9blVeMvzMEj8CBddQekFOpOd+BBQAMm34EKmlUcRi+mtZr25WyEEIegkjvrLbecN3xBzTaWzWldhao/IGIN2BS7iiPycJVpf6qL6/CtvQmblyp8b1Kp+brT95df/Lu+pP6xwVxYtW9/M0JMf7xlnuhsqzeKl1drSh1Hpuvt5bp5xTdW83AOtTS4F4anhMMVD1vl53FoiiXg2O1yD8NZR8OV5v+jpqwVFsKi992Sp7JKFD5+1jEHpVloAoUo/0jav2BXC6PL965Ui4ub/u9ymOP1cdmuQw1UCl3CR2QU6k534EFAAwbewOV/3LVfCXTP680oAnfmjxQ/XN7aby4tOO/e9rpUDutSf+qf2e56A27uxq4Z1WzLlC9W50fPzZfX50fF9PfhG8NBKrCZ6spJKh+BCp5kCftpeE5fd4uO4tFIYrjReW9Bt0dQ/twVLUp7qi9lWp+YfHbzoBApVspYwKV2xD3ghSl1paLoeiV2R7bU6DSH5BTqTnfgQUADBs1UL08fBU/NRqN5uXtpaKYuXT46uXhWlmI8mV3AXcssnS73eMkm+RnX5SesXxZKePVpbJXW7hI+VZv5tri4o70aOEpeNP2UrE4Uy4WF7elFS+vubfeXiyKuOdNszNynZdnvG0hlRRTatY1bz5+t/n43ebj+scFcXz1XfPqzc+OFSrHC+Mf3/RvFVPfuLd+NT8uRGX58bvNx98cF/69lqfcmf2flN5GbeXi4k5zMa/t4b1UN6fYz+0iP6y/b+vvqOzDmr+pTHbUBKVaU1jb4498AElr7fQHh+iVulSWduZsi9H8ER2+ur1YLBaL7p+Ge7m5WF57bHABt123F4utguXFgnfRH5BTqTnfgQUADJu+BKpXLy97Hx0pLi7OZBGoDl9dkr68L5XUmucPg6Shj3qrPLO52G33Y/K6VVBuulSWF/M+JhR4tMjnTbMzUp3+h/6L5Rl54K4rtV2vUqjZCy1fzY8LIUThs6+a6ci/3IxbU94H/KTgdPOzY625fh5LOVDpt/Lhmvx9em9+eC9V5wQDVc/bRR7AuSXNXIq+Y3Af1v1Npbij9lSqJYXFb7vcA5V+pXIKVK+i/ogCyXZ7qeg3LYc9VlJc3Ja3vv+GiHIEltZRe0BOpeZ8BxYAMGzUQHXw8ih+ajQabZdJb8r32ZXpUlkUF++0rt75Y1F8eInOdFfzd09/105L0+LYwo+tqz9+NCaOf61fMoNJ6m3OW7nvU3Afzmijm1mqsYXluGoDX8xAFuzWnO/AAgCGjRqoXhwcxk+NRqPtMulNGT775Q9FwIeXggv872JRlP/sz9n+YzG0zGB2pp81f/fwd830358dE/++5M/58aN/Fccv6JbMZJJ6m/NWDk3t9tL4Sd2HM9roSe6Yfqn9KKy3zWHaqg1BMQNZsFtzvgMLABg2BKok058/DI+WCFRJav720VtlWpwSQojj/ynP3P2ooMzJdDI4UCWfdPtwRhvdzFKNLSyXVRuSYgay4BcEKgDInBqonr94GT81Go22y6Q35fvsJk82dqbRaHz797fmTzb21tjJ2GYaW9iArZpRxQxkwW7N+Q4sAGDYqIHq2fOD+KnRaLRdJr0p32c3ebKxM41G46//eGP+ZGNvjZ2MbaaxhQ3YqhlVzEAW7Nac78ACAIYNgWpAJhs7Q6AawsnYZhpb2ICtmlHFDGTBzwhUAJA5NVA1AACAzfIdWADAsFED1d+OnPgp3yP1/v5+js9uMhs7s7+//94Fx/zJxt4ay9hmGltY74xaNaOK6YR1BTt21gwAViNQDQgbO0OgGkLGNtPYwnpn1KoZVUwnrCvYsbNmALAagWpA2NgZAtUQMraZxhbWO6NWzahiOmFdwY6dNQOA1QhUA8LGzhCohpCxzTS2sN4ZtWpGFdMJ6wp27KwZAKxGoBoQNnaGQDWEjG2msYX1zqhVM6qYTlhXsGNnzQBgtchAJYQgUFmkn52pVUSpWu/bw0UavkD12/b1Xx4GLgwdY5tpbGG9M2rVrDuGJyy4Xi2leBhtc4y2rskAYLu4QKXNVGqgqlWEEJVaRuUGXydqFdHkFlCvlqSr7rXwq06t4s/27iGktahXS8oaBRbLcHW7MBiB6sJTx3mgztncbDMn40D1/Od767u/Oc7R/Vt316/fu38g3fbol/Vbvz6PXGN1PPpw9+73Px+l011DGdtMYwvrnVGrJhfjH8G1h2ozSAWHjoz1aimqbAIVAAyTNoEqnKmkQFWvloQoVSpq/EhR8LVNjkDNi9LrTL1aEqWS+nrXzEZ+oAosXq07UYHKxBQliX0F7bL+JIEqSYvUQFVzHjx1HjjOgsmB6uDX75sjzqP7t+5u7wYHoF2ORx3n6P6t4Ih20BnbTGML651Rq6YEKlNjlC9hoEoXgQoAzKIGqht7jjvJZ2S8mTf2wh/5yzRs+K8TEa9kSqCqVJXq6tVSqVqtaAKVf18CVT6BqnLbeXDbWXgQyEumBaqHu3e3H7kXj+7furv96Oj+LelN+q7Ho47z6Jf13d+6a5zNjG2msYX1zqhVI1D1A4EKAMzSUaCSM5UpgSpwhsqnBqpa8JXHvVIb8EAlfULRbYD0oRp5VQKrFfj0TbBlyrxaRZSq1Yo0M/gU3dSsJKULNee9Tcd56lQMDVTy+/HueNRxDn79/nprkOqNRw9+/d4bcfqXdeNR/4zBUDC2mcYW1jujVi3iI3/mHl87DFTBo658dA0fML1Ha82ravKR9GTSi11zbuAxpeY1H5NABQAZ6zRQeZnKmEDlvXYEnjwcqKQXI2lO9x/58xn50h84d6eWKM3SB6pAOq1VvJd9eQDhLS19bS6uaR3V7OcWKUdtOs6FmpmBSv4ufms86n4pxZ2fYDxqzE8XZMPYZhpbWO+MWjXtWD/dLxz1pqNAFfcunPaAqXxkXfNWlPwA3mfXWxVEPWbzUQhUAJAxNVBdf/LOnZQ05c03KFB5Ty+FHE2g8l5wvNsCgSp8bsX2M1Ru0JRfn9sFKmWcIDcqqPVaLveqP4Fq4YHz4LbmslmBKvBmvD8ebX6/f/e3ROPR4foalbHNNLaw3hm1ahFjfXM//dfZGarQUVc5Q6UcMKMOuTL/DcBStV6rlKp1//kiHrOFQAUAGesoUHkzDQxUjuPI7/bpApX/mYvQeRftR+BtD1Qu+UcOewhUmkFOKoFqM3TrgoGBKuINfsdpfW5q17JzF9kztpnGFtY7o1bN5kAVOsqpVUtH3d4DVXNhKUrV5PwW95gEKgDImBqoNh+/cycvTXlz3MmUQOX/sJ8jv5LoA1XzvbvwaaxBDFT1alUNTEqgkk/PhT/yJ3/+RPkoYPT4oMdAtek4wR/323Saqcm8QBX6CkrL85/vrV+/K41Hm0v6n6eK+grK8AYqg5ppbGG9M2rVAid85AO0oXkq/PVU3Yejw0fd+EDVwUf+mkuX/IO49KO1bR6TQAUAGWsTqJQ0FQxUyr/OlEXkiPjphch/h8orSf39hXaBKvgpN2VNTXzl13/VO/CKLb1z6q6G/Iv38m9PVIMv1uqDaV/Lld+j77Tm91qf8VP++SlvzoWn0h2eOhXdnAwDVfhH0uQVOrp/6673I2nN4en1u9/v/hL3Bj+/8uc4JjTT2MJ6Z9Sq6b4Ha+YxtUkJJ/LnoJWTTKFXo5hAJR9a9T9K4S0Tfi+s7WMSqAAgY2qg+u7p7+4khPAuy1PoDFWmeJ2IYmNn9kP/sK+ZU6C3ff65tuH6ApUT+W8i9UUa/w5VX5j571D1RU//DpUVsii43x94tK7JAGC7UKB6+Hv8RKAyk42dsTJQue/c9+lsw8Nd6Z8AGg7GNtPYwnpn1KpZd6RKp2D5M+v9/8CjdU0GANupgerbR2/jJwKVmWzsjKWBCr0wtpnGFtY7o1bNqGI6kVbB0qep+/6BR+uaDAC2CwWqv7+NnwhUZrKxMwSqIWRsM40trHdGrZpRxXTCuoIdO2sGAKupgeqv/3gTPxGozGRjZwhUQ8jYZhpbWO+MWjWjiumEdQU7dtYMAFYjUA0IGztDoBpCxjbT2MJ6Z9SqGVVMJ6wr2LGzZgCwmhqoGh3YBwAApsp3YAEAw0YNVPlWAwAAAAAWIVABAAAAQEIEKgAAAABIiEAFAAAAAAkRqAAAAAAgIQIVAAAAACREoAIAAACAhAhUAAAAAJAQgQoAAAAAEiJQAQAAAEBCBCoAAAAASIhABQAAAAAJEagAAAAAICECFQAAAAAkRKACAAAAgIQIVAAAAACQEIEKAAAAABL6f3r8ZNdU+soRAAAAAElFTkSuQmCC" alt="" />

这时,我们发现了EXPLAIN。那么EXPLAIN的作用是干嘛的呢?

EXPLAIN显示了mysql如何使用索引来处理select语句以及连接表。也就是校验sql语句是否使用了索引,以及sql语句的查询效率。

EXPLAIN 列的解释

table:显示这一行的数据是关于哪张表的

type:这是重要的列,显示连接使用了何种类型。从最好到最差的连接类型为const、eq_reg、ref、range、indexhe和all

possible_keys:显示可能应用在这张表中的索引。如果为空,没有可能的索引。可以为相关的域从where语句中选择一个合适的语句

key:
实际使用的索引。如果为null,则没有使用索引。很少的情况下,mysql会选择优化不足的索引。这种情况下,可以在select语句中使用use
index(indexname)来强制使用一个索引或者用ignore index(indexname)来强制mysql忽略索引

key_len:使用的索引的长度。在不损失精确性的情况下,长度越短越好

ref:显示索引的哪一列被使用了,如果可能的话,是一个常数

rows:mysql认为必须检查的用来返回请求数据的行数

extra:关于mysql如何解析查询的额外信息。将在表4.3中讨论,但这里可以看到的坏的例子是using temporary和using filesort,意思mysql根本不能使用索引,结果是检索会很慢

EXPLAIN列的解释详细描述请查看

其中有一列需要我们特别关注的,那就是type列

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAABFwAAABjCAIAAAApeIP1AAAYAUlEQVR4nO3d72/bRp7H8flPcg/sk2X9A3qUPKwdHOxWPj1s+weskwD3wCnW9lZPAwSomyIPDrdOD5s4QfVwYXjTNgGuQIwccHXsusIhSNWiwGKzDRJv88Ox06gN9wElcjgcUqIoaobS+4VBK1GU9J0hRc1HlBzhdDzteJ0Bx3F6+S8AAAAADJnwLmUaikhEAAAAAOw0pFDkcKYIAAAAgJU4UwQAAABgrHGmCAAAAMBY04QiAAAAABgfhCIAAAAAY41QBAAAAGCsaULRcL6317sLFy9b20yPDQAAAIC08hGKTJegZ21hAAAAAHoXGYqMn4Sx/4SM8WGxs5neLAAAAEAycaHoVztYO8+2aogsKcbajQUAAABE6RKKnlvA2nn2hYuXTY/N8+fPn/8qhSIbKjG9WQAAAIBkCEX9IxRpKzG9WQAAAIBk4kJRq9V6ZoHYeXa9Kqp16XqjVgpcd5xGrSQilGqNNGN34eJl02Pz7NmzZ61Wyw1FxreXW0maIQUAAACGr0soSvXnvv/77akP/jfVIzx9+vTp05h5dqNWUoKNNhR560RddhzHqVeFEMp94124eDl979KTQ5ENlSQYQQAAAMACXULRz2Gfvi3e/tS/PPXB3fAKEbz7JRI9z/ZOE0WcDSrVGj2dKWrUSkKUqtVS4lCkH5y7H0x1evy2NBhTH9z1B89fRwTWSD4+cijS3Hz3gyl/3ANXND59u68SApX0sxsCAAAA5sSFotevXx+EXJmfmp/XzOeFEGLq/PbBwcGVeTF/RXdH7eLuoubZnZNCgVM+/Z8pchq15KFI38nt81NT57elHl+Zd4fGXWPq/PZBZx1laJUlPXn9+rUbirTb62D7/JQ/7tvnp+avbJ+fitgUmqKSV5JgBAEAAAALdAlFTxTbS4XC0ra6NGh9PurMzPx6/D31oubZVel8j/Z0UOxZJPlMkaufUKTvd6FQ8Hq8Pj+//mR9Xhq17aXC/LpuJANr9U4ORfLy7aWCcJ/IH/fOlfZtcRurj01GKAIAAEAedQlFjwPuLBVEYemOeyFkbt1da33OuyiLWNxd7G+KaklSjOY3SMEbE4cipdQ7SwUxt/74zlKhsHTn8fqcmFtaKsytP16fKyzdCa2qLtOs1Qs5FAVvWZ8ThaX1pYI/7nfkK6o7S4XC3NxcPzXIlSTZIAAAAIB5caHo6Ojoe8nNc5NCiMlzN7+P98npqNMOpz/pcletqHm2dAaoWtecD6rWY08TSWu5+glFwUrdERKnz52bnDx38/tPTovT586dPnfz5rnJUNfb6wZ1H1yNo6MjNxQp28t9ksnTpydPn9M9WfDZbp6bdLfPTbf4friV9LUfAgAAAMZ0CUXfSS7Nzl66NDt5duu777bOaibZs5c663kXg3fXLu6up3m2+lsi/W+LqtVSqVqt6k8W9ROKAoVunZ2dnBSzly7N+mMyOxseoUuzk2e3ts5OTp7dcgfFvfxde3CTkkOR5uats5P+uF+aFeHn2Do7KcTk2UtnJ9s3thckroVQBAAAgDzqEooeKD6enTizpS4MrRN1Vmb24y531YqbZ3fOBFVrMaHIXan906NSreFeD+WffkKRXOfWmdkzZ2bF7McPts5MBIZp68yE1HV5DN3L6vrJyKEodOPHs/K4b52ZEEJ+qo9nhbxALmTrzIQIrtxjJQlGEAAAALBAXCh6+fLlfcXazMTi5v3799dmwpFnZk1dezDi/tCC/LfkdF+MqwdWCvymqF711lLv3GM0unDxcmBsFhc312bEzNr9zcWJicXNzljdX5sRYmbtvnebP1Duovb6/Y7Py5cv3VAU2l5rM2Jicc1/wrUZMbMWKCC0fqqN6FbSz24IAAAAmNN3KFJm8d582r3g3r65OCGE6KzZ79R/QF+fay+N/kMLiSmhyO/95uLExOLijJsU12ZmFhcnOmMiD5w3IPKF5KkkKhT5icvbMl6ilZ6lk5S82/wol3RzEYoAAACQRwM+U9SZb6uhqT3p7isXWTvPjgxFazPt4dhcnPDPDq3NTCwuzkhnbcJxcaChqM19zHYlfpnutc5iZcP4myvRqSNCEQAAAPKoSyj6f8VHb0387s/S/6UbxFsf+Vf//LsJJTLJtyZj7Tz7wsXL4fGROupf+egtIYTwh+yjt4ID4t7e5zDJoUhzc3tTqA+slOBX4FI2b5JKTG8WAAAAIJmEocgEa+fZmlBkQpdQNPRKTG8WAAAAIJm4UHR4eNiwgLXz7AsXL5sem0aj0Tg8PHRDkfHt5VZierMAAAAAyXQJRfsWsHaefeHiZdNjs7+/vy+HIhsqMb1ZAAAAgGTiQtGLFy++sYC18+wLFy+bHptvvvnmmxcvXrihyPj2cisxvVkAAACAZLqEol0LWDvPvnDxsumx2d3d3ZVDkQ2VmN4sAAAAQDKaUOTOsK1qBgcohvFhodFoNBqNRqPRaOlb5JkiAAAAABgHhCIAAAAAY41QBAAAAGCsEYoAAAAAjDVCEQAAAICx1k8oajabWZZk9bPbLI8j02w2/3rs2N/yOLbWsnYwrS0sPau6ZlUxvchdwU4+awYAswhFoyOPI0MoGkPWDqa1haVnVdesKqYXuSvYyWfNAGAWoWh05GJkWuXySDbT45on1u6o1haWnlVds6qYXuSuYCefNQOAWYSi0ZGLkVHyw2icKSIUJWLtjmptYelZ1TWriulF7gp28lkzAJhFKBoduRgZQhGs3VGtLSw9q7pmVTG9yF3BTj5rBgCz0oWiRq0kSrVGaI16Vbt4IJIf6+tVUa1nUotdkoxMo1bSDkrmY0Uo0vBfRwPZLlEPYgtpMO0qNZvCrDj+JD9sNmolIUQmpeduvp67gp181gwAZhGKRgehiFDkPZzNezyhaPiSHjYz3TC5m68rO4bE/JaNkrtBBgDjsvn6XL5DUcx8wK45nCLJlM7CUNT4j6L4tw3z+cdAKPIRikwiFHmyPITnb76efMcwv2PnbpABwDhNKDp+9Tq+NZvNLutsLIji6r1uj9Nf6/7sartREQsbCdbfWymKykbSm8w3aWS61hm1QtKxStxa5bJS8+0D5/aBc/ug8f6UOHXF6Vy1q8XvdUqnUrSBbBer99LjZDvqCBSW+WsqYdd6ahsLoriyZ0kxxlvyHcP8jk0oAoCk0oWi3dWi/35/oyJ/rWAooejeynTn+TRldN7U5UlJ+FZl4WolsgtSB4sLlaL0CO0Q6L4R+qtJb4ra581oZG6oXdhdLaolRZXadazStohQVD/l1TxVPTUl/uV8ox1IrlTFVG29HZn81aT45C/075VhKNIMXadT8kvAnweH91J1if86Gsh2kSZk7qZfuKG7496KZh/WvqayewmnKjUnhcVvuxsVMb2ysjCsg0NwH2tXq1a1saDZjYdfjPfsUkK7UfFeFMb32E67tzItlyoWFoJH4FAfNQfkTGo2OLEAgDzShKKj41/iW7PZbF++t1oUC9eOfzk6vl4RorLRXuFaRYji6k63x+mv6Z7da9crYnr5nnt5d7nolnS94hepvVUUV3alB/FuCjfppo0Fr4/XKu7C3eWiEF5JGwsi7nmzHJnAs+wuVzrbwi8pptRsa26Vy0rNmjNF7SDk3D5w/jDvLmy8PyWEqP7BS0rty/VTovT+dubnmpSxVYauVS6rO5I3pOG9NG7JQLZLZ/nGgvBX1t0xvA9rXlND2VH7KDU3hXU//ojK9c5u4K2Qbdf8fSxij7pWUY6KQytG8yLaWZluD9HGQrE47a7QrtDEHutzq/KK8XeG4BE40EftATmTmg1OLAAgjwYUiqSZwVH4albvT9crQgh5GiF9wtn54HPXn5Rob9WU2lso8icT3qRHuaM8rwpXlfk7t9yFHenD1LhS48dqEEWGQ9GtJ29uPXlz60njvYI4te5e/uyUmH5v271QXVVvla6uV5U6Tyw1OusMskWP7e5yUbTK5dCOFJz1Bia7oSXBUJR6u+wuF0WlEpxvRb40lH04XG32O2qfpealsPhtp2SSIYUifx+L2KOGGYoCxWhfRJ0XyLXK9PK965Xi6o4/Vib2WH30lctQQ5Fyl9ABOZOaDU4sACCPch2K/Lec9ruR/nmlSUn41v5D0S87K9PFlV3/U8yYUJTZaESMjFTJvdWiN3VONPnOpubeQtGb9aXpE0uN9aVpMf9Z+NZAKCp8uJ5BChpEKJInatJeGl4y4O2yu1wUojhdVD4v0N0xtA9HVZvhjpquVPsLi992FoQiXaesCUXugLgXpDi0sVoMxaeh7bGpQpH+gJxJzQYnFgCQR5pQ9PLoVXxrNpvtyzsrRbFw9ejVy6ONihCVa+4K7nxi5etuj9Nfk599WXrGyjWljFdXK15t4SLlW72FG8vLu9KjhVvwpp2VYnGhUiwu70gdr2y4t369XBRxz5vlyMh1XlvwtoVUUkyp2dbcKpeVmr98/ObLx2++fNx4ryBOrr9pX73z4YlC9WRh+r07/q1i7jP31j8uTQtRXX385svHn50U/r1W59yFg2/K2CpD1yqX3RErLu+2V/OGPbyX6pYUB7ld5If19239HZV9WPOaGsqO2kepuSms6/FHPoBk1Tv9wSG6U1cr0s483GI0L6KjV18vF4vFovvScC+3VzO1xwZXcIfr6+Vip2B5teBd9AfkTGo2OLEAgDwaVCh69fKa9zWM4vLywjBC0dGrq9IP0qWSOsv8qYw0fVFvlRe2V/va/dq4rgvKTVcr8mreV24Cjxb5vFmOjFSn/yX4YmVBnnzrSu02VqlbdChyo44QhQ//2E44/uV2ZJrzviwnhZ87H57oLPUzVcahSBm6Tqc25N+Ie1s/vJeqS4KhKPV2kSdhbkkLV6PvGNyHda+pDHfUVKXmpLD4bWc8FOk7ZSgUvYp6EQXS6c5K0R80A3uspLi8I299/0MN5Qgs9VF7QM6kZoMTCwDII00oOnx5HN+azWbXdbJrZp9daVcrorh8r3P13u+L4p2rjExca5XLSs1f/OM3bVuZFyfOf9u5+u27U+Lkp/o1h9CksdVsZaVT+WrBfXgYre8dNetSrS3MYNdGvpiRLNit2eDEAgDySBOKXhwexbdms9l1nezaEJ/92jsi4J2rwRX+b7koKn/yl+z8vhhaZzRHpv/WKpeVmr94+Jum/c+HJ8S/r/hLvn33X8XJ/9StOZQmja1mKyudGm7rtpfGN3UfHkbrc0fNvtRBFJZuc9jWtTEoZiQLdms2OLEAgDwiFPXZ/vROeMZDKOrewqHo80e/Km15TgghTv6XvHD/3YKyZKjN4lDUf9Ptw8NofeyowynV2sKMdG1MihnJgl8QigAgOU0oev7iZXxrNptd18mumX12m1suRqZVLis1f/63X+1v8WOrdIoW36zdUa0tbMS6ZlUxI1mwW7PBiQUA5JEmFD17fhjfms1m13Wya2af3eaWi5FplctKzX/5e8v+Fj+2Sqdo8c3aHdXawkasa1YVM5IFuzUbnFgAQB4Rikan5WJkCEU0a3dUawsbsa5ZVcxIFvyMUAQAyWlCURPITKtcNl3C4I1kpwDkmsGJBQDkkSYU/fXYiW9mj7ZPnz41+Ow2y8XItMpl+Wouana61al0CvGs3ejWFpaeVV2zqphe5K5gJ581A4BZhKLRkYuRIRTB2o1ubWHpWdU1q4rpRe4KdvJZMwCYRSgaHbkYGUIRrN3o1haWnlVds6qYXuSuYCefNQOAWYSi0ZGLkSEUwdqNbm1h6VnVNauK6UXuCnbyWTMAmEUoGh25GBlCEazd6NYWlp5VXbOqmF7krmAnnzUDgFlxoUgIQSjKkUGOTL0qSrXGwB7ON/ah6OedWz8+DFwYO4Pb6AMeTGsLS8+qruXlVe/ps+BGrZTRYdRxuh6jczfIAGBcl1CkzUVqKKpXhRDV+pAqDh7r61XR5hbQqJWkq+618DtHveov9u4hpF40aiWlR4HVhtjdBEYiFDVqJWV09dtiyBtAqfP5D/c39392nOMHd/c2b90PdOrRj5t3f3oe+UjqnPLh/t5XPxxnVLad4gfzwaF023AH09rC0rOqa3Ix/hFce6i2g1Rw6MjYqJWiyiYUAUCudA9F4VwkhaJGrSREqVod4iQ1+P4kx5j2Rem9olEriVJJfc9q5xs/FAVWrzUcSybiScW+Cyasv59Q1NNTdAlFjVqpVAo+jBXbIlDn4U9ftWeNxw/u7u3s/9gql/1JZMI5peMcP7gbnJWOuvjBDIzecAfT2sLSs6prSiiyNQr5+gxF2SIUAcCAaULR7QPHbfKZEW/h7YPw1+eGOkn1j/UR70ZKKKrWaqFJdqlWq2pCkX9fKybiSY1AKHI3Rr0qP44V20Ku8+H+3s4j9+Lxg7t7O4+OW+Wy/2F54jml4zz6cXP/50zqtlL8YD64u2dqMK0tLD2rukYoGgRCEQAMWK+hSM5FtoSiwJkinxqK6sF3D/dKfcRDkfRtP3cApC+oyF0JdCvwTZbgkCnL6lVRqtWq0sLgU0QXGRuKOtsisMGs2BZSnfLn4u6c0mmVy1/d6kw0vTnl4U9febNG/7JuTul/cj8W4gfTOfzJ1GBaW1h6VnUt4utz9h5fewxFwaOufKAKHzC9R+ssq2kyjvRk0ptde2ngMaXBaz8moQgAkkoQirxcZE0o8o7/gScPhyLpDUVakvzrcz4r374D59DUEqVF+lAUSJj1qvfWLU8CvLWln5HFDZpGXCjyn0r7pLq+DItUp/z7cj8UPf/h/qa7vI85pTU/xx+O+MF03F+8mBhMawtLz6quaefr2f4AJ52eQlHcgUp7wFS+/q35OEl+AO974J0Koh6z/SiEIgBIShOKbj154zYlEXnLLQpF3tNLQUUTirw3De+2QCgKn+OwYiKelHIOLfge2y0UKe/18kAFhU7lxEwKNGJCkfyguo2o68uw+HUGPhT3Q1H7N+v7P/c1pxyvnxXFD6Z3efiDaW1h6VnVtYj5ur3fpOvtTFHoqKucKVIOmFGHXJn/IV6p1qhXS7WG/3wRj9lBKAKApHoNRd5CC0OR4zjyp276+XTnuwahUxHar4RbMRFPSv+X3MKncZKGIs1EJYtQFIpfysm9YL9sO1PkOJ3vIO3n7BzC8HU9a+E4ZgbT2sLSs6preQ5FoYOPWrV01E0firxfWXpxqC5nsLjHJBQBQFKaUPTl4zdu8yan3hK32RKK/D8450R89UouzJ1zh08njWIoatRqauhRQpF8miz89Tn5uxzK1+qi3+NThiL1B2LedSu2RXBOqflNkXv9+Q/3N2/tSXPK9pr+d5OifpIxvqEo9PuWjuEPprWFpWdV1wIfhcgHaEszUfjnmrovGoePuvGhqIevzznBv8fpXg78sDP6MQlFAJBU91CkJKJgKAr+0mYov7WJ+HMCkf9OkVeS+jcFuoWi4DfGlJ7a+O6t//ly4F1X+gTT7Yb819Tlv6dQC77hqg+mfT8OPEWUqFAU/qMZnSXdtsVQNkXsH++SO3X84O6e98e72lPMW3tf7f8Y90E7f33OccIT9OEPprWFpWdV13S/C7XzmNqmBAz5pLZysifiJLf+gCkdyfR/aMFbJ/x5VtfHJBQBQFKaUPTFP35zmxDCuyy30JmioeJYHyUXI9PtH2+1VKDO0N/aUjqV0Hj9oMjpNpjpZPHvFA2Enf9O0UCk+neKcmEYBQ/6y4O5G2QAME4Xih7+Ft8IRXbKxciMQihyP0GXPhpPE4oe7kv/RMx4iB/MNFIOprWFpWdV1/LyqvdkU7D8/e/Bf3kwd4MMAMZpQtHnj36Nb4QiO+ViZEYjFCnSnSkaO9ZudGsLS8+qrllVTC+yKlj6IvDAvzyYu0EGAON0oehvv8Y3QpGdcjEyhCJYu9GtLSw9q7pmVTG9yF3BTj5rBgCzNKHoL39vxTdCkZ1yMTKEIli70a0tLD2rumZVMb3IXcFOPmsGALMIRaMjFyNDKIK1G93awtKzqmtWFdOL3BXs5LNmADBLE4qaPXgK9KVVLpsuYfBGslMAcs3gxAIA8kgTigxWg5E3kidVRrJTAAAA44NQhKFqlcsj2UyPKwAAAPpHKAIAAAAw1ghFAAAAAMYaoQgAAADAWCMUAQAAABhrhCIAAAAAY41QBAAAAGCsEYoAAAAAjDVCEQAAAICxRigCAAAAMNYIRQAAAADGGqEIAAAAwFgjFAEAAAAYa4QiAAAAAGONUAQAAABgrBGKAAAAAIy1fwLadp5oPLmNUgAAAABJRU5ErkJggg==" alt="" />

Explain的type显示的是访问类型,是较为重要的一个指标,结果值从好到坏依次是:
system > const > eq_ref > ref > fulltext > ref_or_null > index_merge > unique_subquery > index_subquery > range > index > ALL
一般来说,得保证查询至少达到range级别,最好能达到ref,否则就可能会出现性能问题。

type:ALL 表示全表查询,这在sql查询中是杜绝的。那怎么优化type至少达到ref呢?

很简单,加索引

ALTER TABLE student ADD INDEX student_stuAge ( `stu_age`)

加完索引之后,在执行
EXPLAIN SELECT * FROM student WHERE stu_age=18

我们发现:

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAABGoAAABkCAIAAABRkEEyAAAWkUlEQVR4nO3dX2/bVprH8fNOZi/stRW9h+ll7VzYrQzdzhsYJwH2winG9lS3AQLUTZG7dbqYxA1WlwPDkzbpRYEYXmDrPzWEhZGqRYHBZBo4mSaO/6RJau4FJfKQPKRISSSfo3w/OJiRKcr68SElnSekXPW863U+HMdJ/l8AAAAAsILKtX1yevVOdFAAAAAAbJFv+0TvBAAAAGBkcPYJAAAAAFLh7BMAAAAApMLZJwAAAABIhbNPAAAAAJAKZ58AAAAAIBW/fQIAAAAAJKB9AgAAAIBUaJ8AAAAAIBW/fSr7MsKwa9dvih1l1wYAAABACUS3T2VHMBMbDAAAAECuwu1T6Sd25J/kKb0sMkfZuwUAAADInaF9eiuD2Bm5qBIJCSN2ZwEAAABDZG6fjgQQOyO/dv1m2bU5Ojo6equ1TxKSlL1bAAAAgNzRPmVG+2RMUvZuAQAAAHJnaJ/evHnzQoDEGXmzrupN7edWoxr42XFajaqKUW20BinZtes3y67NixcvXrx588Ztn0rfX26SQUoKAAAAWMHcPg30t9D/64PJj/5noN/w/Pnz588TZuStRjXUAhnbJ2+duNuO4zjNulIq9Nhk167fHHzrBqe3TxKSZKggAAAAYCdz+/RL1OcfqA8+929PfrQVXSGG97hM4mfk3qmnmDNM1UYr1dmnVqOqVLVer2Zun8zF2fposrvFH2jFmPxoyy+ev44KrJG9Pnr7ZLh766NJv+6BHww+/6CvCIEkAxyEAAAAgB0M7dPr16+fRdyanZydNcz8lVJq8urms2fPbs2q2VumBxoX9xY3I++eaAqcRur/7JPTamRvn8wbuXl1cvLqprbFt2bd0rhrTF7dfNZdJ1Ta0JJUXr9+7bZPxv31bPPqpF/3zauTs7c2r07G7ApDqOxJMlQQAAAAsJO5fXoasrkwMbGwGV4atDobd7ZndjX5kWZxM/K6dg7JeIop8cyUfvbJ1U/7ZN7uiYkJb4tXZ2dXn67OalXbXJiYXTVVMrBWenr7pC/fXJhQ7hP5de/+0LkvaWf1sctonwAAAPCOMLdPhwEPFybUxMJD90bEzKq71uqMd1MXs7i3xO8+NbL0O4bvSgXvzNw+haI+XJhQM6uHDxcmJhYeHq7OqJmFhYmZ1cPVmYmFh5FVw8sMa6Wht0/Be1Zn1MTC6sKEX/eH+g9hDxcmJmZmZvrJoCfJskMAAAAAKxnap9PT0x80966MK6XGr9z7IdlnF+NOZVz8rMdDjeJm5NpZpXrTcI6p3kw89aSt5eqnfQomdSukLl65Mj5+5d4Pn11UF69cuXjl3r0r45FN76wb1Lu4Bqenp277FNpf7pOMX7w4fvGK6cmCz3bvyri7f+654fvhJhnkKAQAAACsYG6fvtfcmJ6+cWN6/PLG999vXDZMx6dvdNfzbgYfblzcW6oZefg7T+bvQNXr1Wq9XjefgOqnfQoE3bg8PT6upm/cmPZrMj0drdCN6fHLGxuXx8cvb7hFcW9/3yluVnr7ZLh74/K4X/cb0yr6HBuXx5Uav3zj8njnzs6CzFlonwAAAPCOMLdPj0I+nR67tBFeGFkn7kzP9Kc9HmqUNCPvnl2qNxLaJ3elzlekqo2W+3OkU+qnfdJzblyavnRpWk1/+mjj0ligTBuXxrRN12vo3g6vn43ePkXu/HRar/vGpTGl9Kf6dFrpC/QgG5fGVHDllEkyVBAAAACwk6F9Ojk5OQhZmRqbXz84OFiZijZHUyvhtYcj6U9H6H9Hz3RZXjOwUuC7T826t1b4wSmbqGvXbwZqMz+/vjKlplYO1ufHxubXu7U6WJlSamrlwLvPL5S7qLN+v/U5OTlx26fI/lqZUmPzK/4TrkypqZVAgMj6A+1EN8kAByEAAABgh6ztU2i+78283Rvu/evzY0qp7pr9NglDunivszT+T0dkFmqf/K1fnx8bm5+fcnvKlamp+fmxbk30wnkF0W9k71/i2ie/N/P2jNf7as/S7am8+/ymL+vuon0CAADAO2I4Z5+6M/Nwe9WZnvfVQYmdkce2TytTnXKsz4/5Z5xWpsbm56e0M0HRxnKo7VOH+zs7SfyY7k/dxaEd4++uTKejaJ8AAADwjjC3T/8X8sn7Y3/8q/b/2h3q/U/8H//6x7FQc6Xfm43YGfm16zej9dE21P/hk/eVUsov2SfvBwvi3t9nmfT2yXB3Z1eEf3Eogp/AFdq9WZKUvVsAAACA3KVrn8ogdkZuaJ/K0KN9KjxJ2bsFAAAAyJ2hfTo+Pm4JIHZGfu36zbJr02q1WsfHx277VPr+cpOUvVsAAACA3Jnbp30BxM7Ir12/WXZt9vf39/X2SUKSsncLAAAAkDtD+/Ty5cvvBBA7I792/WbZtfnuu+++e/nypds+lb6/3CRl7xYAAAAgd+b2aVcAsTPya9dvll2b3d3dXb19kpCk7N0CAAAA5M5vn9y5uKhRdnHMSi8Lg8FgMBgMBoPBKGWEzz4BAAAAAIxonwAAAAAgFdonAAAAAEiF9gkAAAAAUqF9AgAAAIBUMrRP7Xb772dOWaPdbhdQDhvZWBlbMtuS0wpiiyk22OBEbZqoMGlYF9ixMzMAWIf2yXo2VsaWzLbktILYYooNNjhRmyYqTBrWBXbszAwA1qF9sp6NlbElsy05rSC2mGKDDU7UpokKk4Z1gR07MwOAdWifrGdjZWzJbEtOK4gtpthggxO1aaLCpGFdYMfOzABgHdon69lYGVsy25LTCmKLKTbY4ERtmqgwaVgX2LEzMwBYp6/2aafx76r6HzuRJmetriqNr6W0T826qjf7q4pVslSm1agai1J0rWz5jM83Z6tRVdVGyxnSfon7JVJoxZQVNZ9gIt5/sh/ArUZVKZVLdFte9R7rAjt2ZgYA69A+WY/2KT+0T0NE+1S8rAdwrjvGlle9J3RgaMrfs3GsKzIA2GioF+/Z3T4lzBxkzfZCskz+BLZPttQ2V7RPZaJ98jTrnYZeQpjSZT8wyj+wrSsyANjIb5/OXr1OHu12++tnTtK4VVeTjdXkdfod7Xa7Z8LguFtTc2sZ1t9bqqjaWta7yh9aZXrmjFsha62KzCyktrmOoewX0ZU8E7zT8wlW9Guq16alGmtzqrK0JyRM6SP7gVH+gU37BAAF6Kt92mz8m6r/udPYNN/TL2oopH3aWbrQfT5vgnK31l3U/fjXpy/Re0MLl73bqrK8E9jwu9pdc7WK9hvW5lRleafzkemvpn18Gp83p8/4u+FN2F2uhCPFRe1ZqwIyS65tQumCW6HNmKNHaXjJ7nKlc9dQ9os2dXN3/dxd0wP3lgx1Nr6m8i5mn1EtCZa87+7W1IWlpblyDuBO2nCqtTnDYVx8GO/ZtV7ubs17UZR+xHbHztIFPaqamwu+A0e20fCGnEvmsicVADD6/Pbp9OzX5GFqn5rvKfXerU6H8+fZfNunTpKd5YqauxPI9kVNXVjccW/vLlZUbc1d6K4Wd6+qLO1qv8S7Kzq0u9bmVGV5++zX07Nf79TchbuLFaW8SGtzKul5hz/8ygSeZXex1smpRUqIKiCz+NrGJNEOJG959ChNWjKU/dJdvjan/JVND4zW2fCaKmSn9xHVmmC9339U7YvuYeCtkO+m+cdYzBF1pxZ6VywsjOFFtL10oVOitblK5YK7QidhGUesz03lhfEPhuA7cGAbjW/IuWQue1IBAKMvW/v04On5g6fnDzY//p2qLz89f7BaVxMfr7oLoz8OdWifZF/UlFL6hEP7V9PuP6bu+tMX473a7Ef/gOzdPvnTDm96FHqgPgOLpsr9M17fhG3tH2iToibXqrjMFtXWMI2OlDR4lEaXBNungffL7mJF1WrBmVnsSyNU52ja/IvZZ1RbgiXvu1D3UlD75B9jMUdUke1TIIzxRdR9gdypXVjc+aJWWd72a1XGEWtukvUY4fYp9JDIG3IumcueVADA6LOxffI/nDqfW4Ze6NfA9CV6b//t06/bSxcqS7v+v4ymnVgX+xm/s1zxJtmZpuklZraltklJQlNh7SiNLhnyftldrChVuVAJ/cuC6YGROselzbGYg0WVHyx53wlon0wbJaZ9cgvi3tAap7XlSqTRKuyIHah9Mr8h55K57EkFAIw+v306OX2VPNrt9v3D8/uH5/cffvw7VV8+PL9/+N+/V+r3q+f3D8/vH7b+MKHUxMf/6a4z7NFutztJtpcW77iRdhcrqnbn1cnpWk25N16dnL66XZu7feou9G4Y7/UWri0u7mq/LTqCd20vVSpztUplcdu/V9XW3Hu/XayopOcd/vAro+e8M6cqS9+GIyVEFZBZfG3jklQWdzureWWPHqWmJZVh7hf91/rHtvmBoTobXlOF7PQ+oloTrOf7j36Q57V1sS+0mI26XdMO5mLDGF5Ep6++XaxUKhX3peHe7qxW1hEbXMEt17eLlW5gfbXgQ8xvyLlkLntSAQCjb8D26fz+ar17NcKFPyzUi2ifTl/d1r5i31m4veR/K9ef9GgTnfC9+sLOat+6l7d3P+T0Ebrrdk1fzbvgJ/DbYp83x894Pad/sX6lNqdP001Re9WqoMySaxuf5HRN/9a7tzx6lIaXBNungfeLPl1zI83djn9gsM6m11Texew3qiXBkvdd6e2TeaNKap9exb2IAn3s9lLFL1oJR6ymsrit733/nz9C78DaNhrfkHPJXPakAgBGn98+HZ+cJY92u/3Vv34ra7Tb7Z4JCxu3a6qyuNP9cedPFfXh7dLCiKrM4Jml1rbkJEMfwToXXExZUcUGK3HTRj7MSAZ2M5c9qQCA0ee3Ty+PT5NHu93+6vFvZY12u90z4ZDGnQ9VwIe3gyv872JF1f7iL9n+UyWyToGjwMrkn1lubUtOEhm9jtLkEa5zwcWUFXUYwQbbHdI27R0IM5KB3cxlTyoAYPRla5++fPK2rCHkk+wvH0bnRnKm+NYMY2bZtZXWPvU/THUuuJiyoooNVsqmvSNhRjLwS9onACiE3z4dvTxJHu12+8t/vC1rtNvtngnfzWFjZWzJbEtOK4bYYooNNmKbJirMSAZ2M5c9qQCA0ee3Ty+OjpNHu93+2z/flDXa7XbPhO/msLEytmS2JacVQ2wxxQYbsU0TFWYkA7uZy55UAMDoo32yfthYGVsy25LTiiG2mGKDjdimiQozkoFf0D4BQCH89qkNAABsVvakAgBGn98+/f3MSR7lvi8/f/68xGeXzMbK2JLZlpxWEFtMscEGJ2rTRIVJw7rAjp2ZAcA6tE/Ws7EytmS2JacVxBZTbLDBido0UWHSsC6wY2dmALAO7ZP1bKyMLZltyWkFscUUG2xwojZNVJg0rAvs2JkZAKxD+2Q9GytjS2ZbclpBbDHFBhucqE0TFSYN6wI7dmYGAOvQPlnPxsrYktmWnFYQW0yxwQYnatNEhUnDusCOnZkBwDqG9kkpRftkkWFWpllX1UZraL8uVvbMrUZVKaXqzVzyxLGxtmKJLeYIv7eI2jRRYdIYXuBfth/89DhwIy/WFRkAbGRun4wdVLh9ataLnM4GPxWaddXhBuhMrjs/uj9Fp1fNur/Ye4Q+KW81qqEtCqxW+Ow9FbGz0gRZM0d3TDFsrG0vrUa1nANZbDEDwbRXvMRXe0aiJtPhMMV+gvQhFPjox4P1/V8c5+zR1t76g4NHx9p9T35a3/r5KPY3hdunx/t73/x4VkBmAEAeYtunaAeltU+tRlWpar1e4JxW+1Ro1gMNT+emNqFqNaqqWq2G5ledeZHfPgVWb7ScuPZJ8ge80+PzMmP+fmal/ZQo62d8Wa2HVbVNt3KrUa1WSzmoxRYz8N7i/VoLXvq95TmZzlwgLUwJnyB9CFTv+OdvOg3S2aOtve39YL+UsX1ynLNHW8EGLI/MAIB8+O3T188cd+hnW7yFXz+LXrxX6PzC/1TQGh9dqH2qN0LpWo1qtdGoG9on/7G0T7RPAVbVNtXK7nHfrJdwVIstZkywmDcaq0htn/r8DQXTAz/e39t+4t48e7S1t/3k7NGWdgYpc/vkOE9+Wt//JdfMAICc9Gif9A5KSvsUOPvkC7dPzeAUy/2hOeLtU/DKI/8SR1VttPRNCWyWtlrgmkd/eXdZs66qjUZdWxh8in4yu1H06yrDz6s9R9G7QnJt+8rTPezD7Yf3cP2fGIw5R7CYMTPOUnrMIYu75lkrVPTFFa2e4yTvsn7COPLfXbXA+skit31ynOOfv3nQ7am89un452+8Bsm/bWqf/NNZOWUGAOSld/ukuh2UmPbJ+9APPHm0fdL6LG1J9ov3DBMMSQLn5cIRtUXmWWmgF23W9R4mehmT9mWFpKJlydypcHDqFrl8qvyzT9Jq208e/Zn1DKGrYZNz9k9sMY0zTilfVRtM6F+dglsUXOIX2FS95F2WOUyfv6FgWmD9Tz502yf321Du8j7ap3z+jATtEwAUwG+fHjw9d0eod/KWC2qfvKfXJt6G9sn78PfuC7RP0X8+tf3sk9tW6nOkXrPS0CRRL1RQ5JyF138OoX3yH25+XgHtk7jaZs8T6ZkMDUjvnP0TW8zoe4v5BLeF/E2LvoTCS4y19qqXuMuyhun3NxTMDxw4U+S3T50/I7H/S1/tUy5ff6J9AoAC9GifvIUC2yfHcUL/ZBppn/zrUCIzReMXG2xvn1wt7Q8PDjArNUyWC2mfenyxrVDia5slT7TV6Cdn/8QWMxRsZHonJ3P7FK1p6H0yZpdlDaP9NsmV7nn2yXG6l/Dtc/YJAN4hfvt0//DcHd7cylviDintU8v7Y3tOzL+hhy5XMp6iGsX2qdVohGedoVmpfuotek1U6MIt/Vqp6DV0+bRP5ucV0D5Jq20fecJtgfdzppz9E1vM0NE4AtfseWK+MtpsdL8PFrh4z3w9ZOfivaRdljlM6FcJFWyfIt996jr68WD9wZ7WPnXW9C/ti/vuE+0TANgptn0K9U7B9km/8k3vTnIU871z7RJ9/8fAp3LghxTtU/AyoNCWSpxZ6ZXxzy8EZprK//6Cuxn6XwzWv0/eCE6cwr/M/M/S+lNkzxyZQhmeV0D7JK+2WfNET6oEvxuYMucIFjNwiiZA4us9k8Bk2i9U4Etkia82v3rJuyxjmBI+QfqQ+Jf39BXPHm3teX95r9NNPdj7Zv+npLNP/OU9ALCW3z599a/f3KGU8m7rI3L2qVB8KsSxsTK2ZLYl5zDl1qqKLabYYIMTtWmiwqQRCDzkP5THf/cJACymtU+Pf0setE8y2VgZWzKLyRk+LTLUf63XL4eN/n22oRFbTDHBhk/UpokKk0Yo8NGPB8M6X/R4X/tvRg2VdUUGABv57dOXT94mD9onmWysjC2Zbck5KO1aqvyuVxNbTLHBBidq00SFScO6wI6dmQHAOlr79I+3yYP2SSYbK2NLZltyWkFsMcUGG5yoTRMVJg3rAjt2ZgYA6/jt09/++SZ50D7JZGNlbMlsS04riC2m2GCDE7VposKkYV1gx87MAGAd2ifr2VgZWzLbktMKYospNtjgRG2aqDBpWBfYsTMzAFjHb5/aKTwHAABSlT2pAIDRp3jPBQAAAIA0aJ8AAAAAIBXaJwAAAABIhfYJAAAAAFKhfQIAAACAVGifAAAAACAV2icAAAAASIX2CQAAAABSoX0CAAAAgFRonwAAAAAgFdonAAAAAEiF9gkAAAAAUqF9AgAAAIBUaJ8AAAAAIBXaJwAAAABI5f8BxWXHNmDHn8AAAAAASUVORK5CYII=" alt="" />

type类型达到ref。这时的sql语句效率就比较高了。

只是针对索引方面的sql优化,希望对你有帮助!也欢迎大家多提提意见

Mysql语句查询优化的更多相关文章

  1. 《MySQL慢查询优化》之SQL语句及索引优化

    1.慢查询优化方式 服务器硬件升级优化 Mysql服务器软件优化 数据库表结构优化 SQL语句及索引优化 本文重点关注于SQL语句及索引优化,关于其他优化方式以及索引原理等,请关注本人<MySQ ...

  2. php mysql 一个查询优化的简单例子

    PHP+Mysql是一个最经常使用的黄金搭档,它们俩配合使用,能够发挥出最佳性能,当然,如果配合Apache使用,就更加Perfect了. 因此,需要做好对mysql的查询优化.下面通过一个简单的例子 ...

  3. WebAPI调用笔记 ASP.NET CORE 学习之自定义异常处理 MySQL数据库查询优化建议 .NET操作XML文件之泛型集合的序列化与反序列化 Asp.Net Core 轻松学-多线程之Task快速上手 Asp.Net Core 轻松学-多线程之Task(补充)

    WebAPI调用笔记   前言 即时通信项目中初次调用OA接口遇到了一些问题,因为本人从业后几乎一直做CS端项目,一个简单的WebAPI调用居然浪费了不少时间,特此记录. 接口描述 首先说明一下,基于 ...

  4. MySQL in查询优化

    https://blog.csdn.net/gua___gua/article/details/47401621 MySQL in查询优化<一> 原创 2015年08月10日 17:57: ...

  5. 查询优化 | MySQL慢查询优化

    ​Explain查询:rows,定位性能瓶颈. 只需要一行数据时,使用LIMIT1. 在搜索字段上建立索引. 使用ENUM而非VARCHAR. 选择区分度高的列作为索引. 采用扩展索引,而不是新建索引 ...

  6. MySQL 慢查询优化

    为什么查询速度会慢 1.慢是指一个查询的响应时间长.一个查询的过程: 客户端发送一条查询给服务器 服务器端先检查查询缓存,如果命中了缓存,则立可返回存储在缓存中的结果.否则进入下一个阶段 服务器端进行 ...

  7. MySQL 语句执行过程详解

    MySQL 原理篇 MySQL 索引机制 MySQL 体系结构及存储引擎 MySQL 语句执行过程详解 MySQL 执行计划详解 MySQL InnoDB 缓冲池 MySQL InnoDB 事务 My ...

  8. MySQL SQL查询优化技巧详解

    MySQL SQL查询优化技巧详解 本文总结了30个mysql千万级大数据SQL查询优化技巧,特别适合大数据里的MYSQL使用. 1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 ...

  9. 关于mysql的查询优化

    由于工作原因,最近甲方客户那边多次反应了他们那边的系统查询速度慢,经过排除之后,发现他们那边的数据库完全没有用到索引,简直坑得一笔,通过慢查询日志分析,为数据表建立了适当的索引之后,查询速度明显的提高 ...

随机推荐

  1. Python基础2 编码和逻辑运算符

    编码: AscII码 :标准ASCII码是采用7位二进制码来编码的,当用1个字节(8位二进制码)来表示ASCII码时,就在最高位添加1个0. 一个英文字母占一个字节 8位(bit)==一个字节(byt ...

  2. canvas+gif.js打造自己的数字雨头像

    前言 昨天 是1024程序员节,不知道各位看官过的怎么样.既然是过节,就要有个过节的样子,比方说,换个头像

  3. h5实现照片墙效果

    <style> *{ margin: 0; padding: 0; } body{ background: url(images/bg.jpg); } #div1{ width: 100% ...

  4. LeetCode 48. Rotate Image(旋转图像)

    You are given an n x n 2D matrix representing an image. Rotate the image by 90 degrees (clockwise). ...

  5. 【20171026早】alert(1) to win - 第六、七、八题

    早上7点起床,又写了一篇小说发在了起点网上,有兴趣的可以看看.点击这里 忙完后,继续练习,刚开始发现自己答题的速度有些慢,可能是因为对于html,javascript知识不是很精通,但是话又说回来,谁 ...

  6. JS框架设计读书笔记之-选择器引擎01

    选择符 选择符是指CSS样式规则最左边的部分,例如 p{},#id{},.class{},p.class{} 等等 总共可以分为四大类: 并联选择器 => 逗号 => $('div,spa ...

  7. 理解typename的两个含义

    理解typename的两个含义 问题:在下面的 template declarations(模板声明)中 class 和 typename 有什么不同? template<class T> ...

  8. Ubuntu下通过makefile生成静态库和动态库简单实例

    本文转自http://blog.csdn.net/fengbingchun/article/details/17994489 Ubuntu环境:14.04 首先创建一个test_makefile_gc ...

  9. 暑假练习赛 006 B Bear and Prime 100

    Bear and Prime 100Crawling in process... Crawling failed Time Limit:1000MS     Memory Limit:262144KB ...

  10. AngularJS学习篇(二十四)

    AngularJS 应用 <html ng-app="myNoteApp"> <head> <meta charset="utf-8&quo ...