bzoj 3996: [TJOI2015]线性代数
Description
给出一个N*N的矩阵B和一个1*N的矩阵C。求出一个1*N的01矩阵A.使得
Input
Output
输出最大的D
Sample Input
1 2 1
3 1 0
1 2 3
2 3 7
Sample Output
HINT
1<=N<=500
Source
经过推导得出:
是一个最大权闭合子图的模型
选择一个Ai==1,会损失Ci;
对于一个点对(i,j),当Ai和Aj同时==1时,可以获得Bij的收益;
由于收益是同时依赖于两个点的,所以可以对每一个点对新建一个附加点tt,从s向其连Bij的边,然后tt向i,j连Inf;
其余的连边就是最大权闭合子图的套路了
最后正权和-最小割即为答案
(玄学剪枝真有用)
// MADE BY QT666
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<iostream>
#include<cstring>
#define RG register
using namespace std;
typedef long long ll;
const int N=2000000;
const int Inf=19260817;
int gi()
{
int x=0;
char ch=getchar();
while(ch<'0'||ch>'9') ch=getchar();
while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
return x;
}
int head[N],nxt[N],to[N],s[N],cnt=1,S,T,n,sum,q[N],level[N],vis[N],F,c[N];
int b[600][600],C[1000],tot;
inline void Addedge(int x,int y,int z) {
to[++cnt]=y,s[cnt]=z,nxt[cnt]=head[x],head[x]=cnt;
}
inline void lnk(int x,int y,int z){
Addedge(x,y,z);Addedge(y,x,0);
}
inline bool bfs(){
for(RG int i=S;i<=T;i++) level[i]=0,vis[i]=0;
int t=0,sum=1;
q[0]=S,level[S]=1,vis[S]=1;
while(t<sum){
int now=q[t++];
if(now==T) return 1;
for(RG int i=head[now];i;i=nxt[i]){
int y=to[i];
if(level[y]==0&&s[i]){
level[y]=level[now]+1;
q[sum++]=y;
}
}
}
return 0;
}
inline int dfs(int now,int maxf){
if(now==T) return maxf;
int ret=0;
for(RG int i=head[now];i;i=nxt[i]) {
int y=to[i],f=s[i];
if(level[y]==level[now]+1&&f) {
int minn=min(maxf-ret,f);
f=dfs(y,minn);
s[i]-=f;
s[i^1]+=f;ret+=f;
if(ret==maxf) break;
}
}
if(!ret) level[now]=0;
return ret;
}
inline void Dinic(){
while(bfs()) F+=dfs(S,Inf);
}
int main(){
n=gi();
for(RG int i=1;i<=n;i++)
for(RG int j=1;j<=n;j++) b[i][j]=gi();
for(RG int i=1;i<=n;i++) C[i]=gi(),tot+=C[i];
S=0,T=n+n*n+1;int ans=0,tt=n;
for(RG int i=1;i<=n;i++) lnk(i,T,C[i]);
for(RG int i=1;i<=n;i++){
for(RG int j=1;j<=n;j++){
tt++;lnk(S,tt,b[i][j]);ans+=b[i][j];
lnk(tt,i,Inf);lnk(tt,j,Inf);
}
}
Dinic();printf("%d\n",ans-F);
return 0;
}
bzoj 3996: [TJOI2015]线性代数的更多相关文章
- bzoj 3996: [TJOI2015]线性代数 [最小割]
3996: [TJOI2015]线性代数 题意:给出一个NN的矩阵B和一个1N的矩阵C.求出一个1*N的01矩阵A.使得 \(D=(A * B-C)* A^T\)最大.其中A^T为A的转置.输出D.每 ...
- ●BZOJ 3996 [TJOI2015]线性代数
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3996 题解: 好题啊.(不太熟悉矩阵相关,所以按某些博主的模型转换来理解的)首先,那个式子可 ...
- bzoj 3996 [TJOI2015]线性代数——最小割
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3996 b[ i ][ j ] 要计入贡献,当且仅当 a[ i ] = 1 , a[ j ] ...
- bzoj 3996: [TJOI2015]线性代数【最小割】
把转置矩阵看成逆矩阵吓傻了233 首先按照矩乘推一下式子: \[ D=\sum_{i=1}^n a[i]*(\sum_{j=1}^n a[j]*b[j][i])-c[i] \] \[ D=(\sum_ ...
- 【BZOJ 3996】 3996: [TJOI2015]线性代数 (最小割)
3996: [TJOI2015]线性代数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1368 Solved: 832 Description 给 ...
- 【BZOJ】3996: [TJOI2015]线性代数
题意 给出一个\(N \times N\)的矩阵\(B\)和一个\(1 \times N\)的矩阵\(C\).求出一个\(1 \times N\)的01矩阵\(A\),使得\[ D = ( A * B ...
- 【BZOJ3996】[TJOI2015]线性代数(最小割)
[BZOJ3996][TJOI2015]线性代数(最小割) 题面 BZOJ 洛谷 题解 首先把式子拆开,发现我们的答案式就是这个: \[\sum_{i=1}^n\sum_{j=1}^n B_{i,j} ...
- BZOJ_3996_[TJOI2015]线性代数_最大权闭合子图
BZOJ_3996_[TJOI2015]线性代数_最大权闭合子图 Description 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大. ...
- 【LG3973】[TJOI2015]线性代数
[LG3973][TJOI2015]线性代数 题面 洛谷 题解 正常解法 一大堆矩阵乘在一起很丑对吧 化一下柿子: \[ D=(A*B-C)*A^T\\ \Leftrightarrow D=\sum_ ...
随机推荐
- 并行设计模式(一)-- Future模式
Java多线程编程中,常用的多线程设计模式包括:Future模式.Master-Worker模式.Guarded Suspeionsion模式.不变模式和生产者-消费者模式等.这篇文章主要讲述Futu ...
- 08-图8 How Long Does It Take
原题: Given the relations of all the activities of a project, you are supposed to find the earliest co ...
- tnsping非常慢
最近给同事虚拟机上安装了一个11g数据库,发现一个奇怪的问题,用windows客户段连接时候非常慢,慢到不能容忍的地步,但是本地os验证登录没有问题,速度非常快,初步定为问题出在监听上,于是我tnsp ...
- 乐呵乐呵得了 golang入坑系列
开场就有料,今天返回去看了看以前的文章,轻松指数有点下降趋势.一琢磨,这不是我的风格呀.一反思,合着是这段时间,脑子里杂七杂八的杂事有点多,事情一多,就忘了快乐.古话说得好:愁也一天,乐也一天,只要还 ...
- Servlet之过滤器(Filter)和监听器(Listener)
过滤器 过滤器是一个java组件,可以拦截发送至某个servelet,jsp页面或静态页面的请求,可以在响应发送到客户之前进行拦截 工作原理: 过滤器类必须实现 Filter 接口,包含的方法如下: ...
- ThinkPHP中处理Layout模板的问题
ThinkPHP中的模板引擎内置了布局模板功能支持,可以方便实现嵌套. 其中有两种布局方式,一种为以布局模板为入口的布局方式,但是需要开启LAYOUT_ON 参数(默认不开启) 并且设置布局入口文件名 ...
- 排列oj
835:排列 总时间限制: 5000ms 内存限制: 65536kB 描述 题目描述: 大家知道,给出正整数n,则1到n这n个数可以构成n!种排列,把这些排列按照从小到大的顺序(字典顺序)列出,如n= ...
- hiho-1015- KMP算法
#1015 : KMP算法 时间限制:1000ms 单点时限:1000ms 内存限制:256MB 描述 小Hi和小Ho是一对好朋友,出生在信息化社会的他们对编程产生了莫大的兴趣,他们约定好互相帮助,在 ...
- 雅虎WEB前端网站优化 -- 34条军规
雅虎给出了优化网站加载速度的34条法则(包括Yslow规则22条) 详细说明,下载转发 ponytail 的译文(来自帕兰映像). 1.Minimize HTTP Requests 减少HTTP请求 ...
- 实现快餐配送页面jq
<!DOCTYPE html><html> <head> <meta charset="utf-8"> <title>快 ...