Description

给出一个N*N的矩阵B和一个1*N的矩阵C。求出一个1*N的01矩阵A.使得

D=(A*B-C)*A^T最大。其中A^T为A的转置。输出D

Input

第一行输入一个整数N,接下来N行输入B矩阵,第i行第J个数字代表Bij.
接下来一行输入N个整数,代表矩阵C。矩阵B和矩阵C中每个数字都是不超过1000的非负整数。

Output

输出最大的D

Sample Input

3
1 2 1
3 1 0
1 2 3
2 3 7

Sample Output

2

HINT

1<=N<=500

Source

经过推导得出:

是一个最大权闭合子图的模型

选择一个Ai==1,会损失Ci;

对于一个点对(i,j),当Ai和Aj同时==1时,可以获得Bij的收益;

由于收益是同时依赖于两个点的,所以可以对每一个点对新建一个附加点tt,从s向其连Bij的边,然后tt向i,j连Inf;

其余的连边就是最大权闭合子图的套路了

最后正权和-最小割即为答案

(玄学剪枝真有用)

// MADE BY QT666
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<iostream>
#include<cstring>
#define RG register
using namespace std;
typedef long long ll;
const int N=2000000;
const int Inf=19260817;
int gi()
{
int x=0;
char ch=getchar();
while(ch<'0'||ch>'9') ch=getchar();
while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
return x;
}
int head[N],nxt[N],to[N],s[N],cnt=1,S,T,n,sum,q[N],level[N],vis[N],F,c[N];
int b[600][600],C[1000],tot;
inline void Addedge(int x,int y,int z) {
to[++cnt]=y,s[cnt]=z,nxt[cnt]=head[x],head[x]=cnt;
}
inline void lnk(int x,int y,int z){
Addedge(x,y,z);Addedge(y,x,0);
}
inline bool bfs(){
for(RG int i=S;i<=T;i++) level[i]=0,vis[i]=0;
int t=0,sum=1;
q[0]=S,level[S]=1,vis[S]=1;
while(t<sum){
int now=q[t++];
if(now==T) return 1;
for(RG int i=head[now];i;i=nxt[i]){
int y=to[i];
if(level[y]==0&&s[i]){
level[y]=level[now]+1;
q[sum++]=y;
}
}
}
return 0;
}
inline int dfs(int now,int maxf){
if(now==T) return maxf;
int ret=0;
for(RG int i=head[now];i;i=nxt[i]) {
int y=to[i],f=s[i];
if(level[y]==level[now]+1&&f) {
int minn=min(maxf-ret,f);
f=dfs(y,minn);
s[i]-=f;
s[i^1]+=f;ret+=f;
if(ret==maxf) break;
}
}
if(!ret) level[now]=0;
return ret;
}
inline void Dinic(){
while(bfs()) F+=dfs(S,Inf);
}
int main(){
n=gi();
for(RG int i=1;i<=n;i++)
for(RG int j=1;j<=n;j++) b[i][j]=gi();
for(RG int i=1;i<=n;i++) C[i]=gi(),tot+=C[i];
S=0,T=n+n*n+1;int ans=0,tt=n;
for(RG int i=1;i<=n;i++) lnk(i,T,C[i]);
for(RG int i=1;i<=n;i++){
for(RG int j=1;j<=n;j++){
tt++;lnk(S,tt,b[i][j]);ans+=b[i][j];
lnk(tt,i,Inf);lnk(tt,j,Inf);
}
}
Dinic();printf("%d\n",ans-F);
return 0;
}

  

bzoj 3996: [TJOI2015]线性代数的更多相关文章

  1. bzoj 3996: [TJOI2015]线性代数 [最小割]

    3996: [TJOI2015]线性代数 题意:给出一个NN的矩阵B和一个1N的矩阵C.求出一个1*N的01矩阵A.使得 \(D=(A * B-C)* A^T\)最大.其中A^T为A的转置.输出D.每 ...

  2. ●BZOJ 3996 [TJOI2015]线性代数

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3996 题解: 好题啊.(不太熟悉矩阵相关,所以按某些博主的模型转换来理解的)首先,那个式子可 ...

  3. bzoj 3996 [TJOI2015]线性代数——最小割

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3996 b[ i ][ j ] 要计入贡献,当且仅当 a[ i ] = 1 , a[ j ] ...

  4. bzoj 3996: [TJOI2015]线性代数【最小割】

    把转置矩阵看成逆矩阵吓傻了233 首先按照矩乘推一下式子: \[ D=\sum_{i=1}^n a[i]*(\sum_{j=1}^n a[j]*b[j][i])-c[i] \] \[ D=(\sum_ ...

  5. 【BZOJ 3996】 3996: [TJOI2015]线性代数 (最小割)

    3996: [TJOI2015]线性代数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1368  Solved: 832 Description 给 ...

  6. 【BZOJ】3996: [TJOI2015]线性代数

    题意 给出一个\(N \times N\)的矩阵\(B\)和一个\(1 \times N\)的矩阵\(C\).求出一个\(1 \times N\)的01矩阵\(A\),使得\[ D = ( A * B ...

  7. 【BZOJ3996】[TJOI2015]线性代数(最小割)

    [BZOJ3996][TJOI2015]线性代数(最小割) 题面 BZOJ 洛谷 题解 首先把式子拆开,发现我们的答案式就是这个: \[\sum_{i=1}^n\sum_{j=1}^n B_{i,j} ...

  8. BZOJ_3996_[TJOI2015]线性代数_最大权闭合子图

    BZOJ_3996_[TJOI2015]线性代数_最大权闭合子图 Description 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大. ...

  9. 【LG3973】[TJOI2015]线性代数

    [LG3973][TJOI2015]线性代数 题面 洛谷 题解 正常解法 一大堆矩阵乘在一起很丑对吧 化一下柿子: \[ D=(A*B-C)*A^T\\ \Leftrightarrow D=\sum_ ...

随机推荐

  1. Java基础回顾(3)

    数组:用一种数据类型的集合 ★数组元素下标从0开始. 数组的复制.扩容: ①.System.arraycopy(源数组, 源数组的初始下标,                     目标数组, 目标数 ...

  2. IPhoneX网页布局

    IPhoneX全面屏是十分科技化的,但是由于其圆角和摄像头刘海位置以及操控黑条的存在使得我们需要去对其样式做一些适配,没有X的同学可以开启 Xcode 9 的iPhone X 模拟器作为学习和调试. ...

  3. python使用rsa库做公钥解密(网上别处找不到)

    使用RSA公钥解密,用openssl命令就是openssl rsautl -verify -in cipher_text -inkey public.pem -pubin -out clear_tex ...

  4. PHP设置环境变量

    如果提示php命令不存在.说明未设置.设置方法如下 方法一:直接运行命令 [PHP] 纯文本查看 复制代码 ? 1 export PATH=$PATH:/usr/local/xxxx/php/bin ...

  5. HTTP协议之URL

    1.什么是URL URL的全称是Uniform Resoure Locator,统一资源定位器.URL是浏览器寻找信息时所需的资源位置.当一个人将浏览器指向一个URL,浏览器就会在幕后发送适当的协议报 ...

  6. 日志模块---logging

    作用 在程序的运行过程中,会遇到很多需要打印的中间信息,通过使用logging模块可以详细的输出信息,不同于print()函数的单一功能. 应用场景 对于软件程序的运行过程中输出中间信息,如账单信息, ...

  7. 【算法】字典的诞生:有序数组 PK 无序链表

    参考资料 <算法(java)>                           — — Robert Sedgewick, Kevin Wayne <数据结构>       ...

  8. Python爬虫(十)_正则表达式

    本篇将介绍python正则表达式,更多内容请参考:[python正则表达式] 什么是正则表达式 正则表达式,又称规则表达式,通常被用来检索.替换那些符合某个模式(规则)的文本. 正则表达式是对字符串操 ...

  9. Create-React-App创建antd-mobile开发环境(学习中的记录)

    (参考别人结合自己的整理得出,若有错误请大神指出) Facebook 官方推出Create-React-App脚手架,基本可以零配置搭建基于webpack的React开发环境,内置了热更新等功能. 详 ...

  10. MyEclipse激活步骤

    1.前言:   MyEclipse 成功安装后使用天数仅仅有30天,打开软件后常常会弹出提醒我们在5天内要激活的对话框.没有激活的话,时间一到就不能使用了. 众所周知,中国的软件是不用花钱的,这里就介 ...