bzoj 3996: [TJOI2015]线性代数
Description
给出一个N*N的矩阵B和一个1*N的矩阵C。求出一个1*N的01矩阵A.使得
Input
Output
输出最大的D
Sample Input
1 2 1
3 1 0
1 2 3
2 3 7
Sample Output
HINT
1<=N<=500
Source
经过推导得出:

是一个最大权闭合子图的模型
选择一个Ai==1,会损失Ci;
对于一个点对(i,j),当Ai和Aj同时==1时,可以获得Bij的收益;
由于收益是同时依赖于两个点的,所以可以对每一个点对新建一个附加点tt,从s向其连Bij的边,然后tt向i,j连Inf;
其余的连边就是最大权闭合子图的套路了
最后正权和-最小割即为答案
(玄学剪枝真有用)
// MADE BY QT666
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<iostream>
#include<cstring>
#define RG register
using namespace std;
typedef long long ll;
const int N=2000000;
const int Inf=19260817;
int gi()
{
int x=0;
char ch=getchar();
while(ch<'0'||ch>'9') ch=getchar();
while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
return x;
}
int head[N],nxt[N],to[N],s[N],cnt=1,S,T,n,sum,q[N],level[N],vis[N],F,c[N];
int b[600][600],C[1000],tot;
inline void Addedge(int x,int y,int z) {
to[++cnt]=y,s[cnt]=z,nxt[cnt]=head[x],head[x]=cnt;
}
inline void lnk(int x,int y,int z){
Addedge(x,y,z);Addedge(y,x,0);
}
inline bool bfs(){
for(RG int i=S;i<=T;i++) level[i]=0,vis[i]=0;
int t=0,sum=1;
q[0]=S,level[S]=1,vis[S]=1;
while(t<sum){
int now=q[t++];
if(now==T) return 1;
for(RG int i=head[now];i;i=nxt[i]){
int y=to[i];
if(level[y]==0&&s[i]){
level[y]=level[now]+1;
q[sum++]=y;
}
}
}
return 0;
}
inline int dfs(int now,int maxf){
if(now==T) return maxf;
int ret=0;
for(RG int i=head[now];i;i=nxt[i]) {
int y=to[i],f=s[i];
if(level[y]==level[now]+1&&f) {
int minn=min(maxf-ret,f);
f=dfs(y,minn);
s[i]-=f;
s[i^1]+=f;ret+=f;
if(ret==maxf) break;
}
}
if(!ret) level[now]=0;
return ret;
}
inline void Dinic(){
while(bfs()) F+=dfs(S,Inf);
}
int main(){
n=gi();
for(RG int i=1;i<=n;i++)
for(RG int j=1;j<=n;j++) b[i][j]=gi();
for(RG int i=1;i<=n;i++) C[i]=gi(),tot+=C[i];
S=0,T=n+n*n+1;int ans=0,tt=n;
for(RG int i=1;i<=n;i++) lnk(i,T,C[i]);
for(RG int i=1;i<=n;i++){
for(RG int j=1;j<=n;j++){
tt++;lnk(S,tt,b[i][j]);ans+=b[i][j];
lnk(tt,i,Inf);lnk(tt,j,Inf);
}
}
Dinic();printf("%d\n",ans-F);
return 0;
}
bzoj 3996: [TJOI2015]线性代数的更多相关文章
- bzoj 3996: [TJOI2015]线性代数 [最小割]
3996: [TJOI2015]线性代数 题意:给出一个NN的矩阵B和一个1N的矩阵C.求出一个1*N的01矩阵A.使得 \(D=(A * B-C)* A^T\)最大.其中A^T为A的转置.输出D.每 ...
- ●BZOJ 3996 [TJOI2015]线性代数
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3996 题解: 好题啊.(不太熟悉矩阵相关,所以按某些博主的模型转换来理解的)首先,那个式子可 ...
- bzoj 3996 [TJOI2015]线性代数——最小割
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3996 b[ i ][ j ] 要计入贡献,当且仅当 a[ i ] = 1 , a[ j ] ...
- bzoj 3996: [TJOI2015]线性代数【最小割】
把转置矩阵看成逆矩阵吓傻了233 首先按照矩乘推一下式子: \[ D=\sum_{i=1}^n a[i]*(\sum_{j=1}^n a[j]*b[j][i])-c[i] \] \[ D=(\sum_ ...
- 【BZOJ 3996】 3996: [TJOI2015]线性代数 (最小割)
3996: [TJOI2015]线性代数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1368 Solved: 832 Description 给 ...
- 【BZOJ】3996: [TJOI2015]线性代数
题意 给出一个\(N \times N\)的矩阵\(B\)和一个\(1 \times N\)的矩阵\(C\).求出一个\(1 \times N\)的01矩阵\(A\),使得\[ D = ( A * B ...
- 【BZOJ3996】[TJOI2015]线性代数(最小割)
[BZOJ3996][TJOI2015]线性代数(最小割) 题面 BZOJ 洛谷 题解 首先把式子拆开,发现我们的答案式就是这个: \[\sum_{i=1}^n\sum_{j=1}^n B_{i,j} ...
- BZOJ_3996_[TJOI2015]线性代数_最大权闭合子图
BZOJ_3996_[TJOI2015]线性代数_最大权闭合子图 Description 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大. ...
- 【LG3973】[TJOI2015]线性代数
[LG3973][TJOI2015]线性代数 题面 洛谷 题解 正常解法 一大堆矩阵乘在一起很丑对吧 化一下柿子: \[ D=(A*B-C)*A^T\\ \Leftrightarrow D=\sum_ ...
随机推荐
- Java 操作 Json
1. 使用Gson构建Json 初始化 JsonObject jsonObject = new JsonObject(); 添加属性 jsonObject.addProperty("name ...
- C语言之找零钱
#include<stdio.h>int main(){ int one,tow,five,num=1; for (one = 1; one < num*10; one++) { f ...
- 编程语言的基础——搞定JavaIO
关键字:IO基础,JUnit生命周期,字节流,字符流,字符编码,对象流,序列化,反序列化 Java I/O 流是一组有顺序的,有起点和终点的字节集合.是对设备文件间数据传输的总称和抽象. 在IO中涉及 ...
- 在ThinkPHP中使用常量解决路由常规地址不安全传送数据问题
在ThinkPHP搭建项目的同时,会考虑到后期对静态页面的维护问题, 在项目的不断完善的同时,会有大量图片,css文件,以及js文件等一些容易修改.添加.或者删除的资源 如果在中后期对各个静态页面,j ...
- 实战-Mysql主从复制
前言: Mysql内建的复制功能是构建大型高性能应用程序的基础.由于目前mysql的高可用性架构MMM和MHA均建立在复制的基础之上,本文就mysql主从复制进行实战描述,希望对读者提供帮助.之前 服 ...
- 最全最详细:ubuntu16.04下内核编译以及设备驱动程序的编写(针对新手而写)
写在前面:本博客为本人原创,转载请注明出处!同时,本博客严禁任何下载站随意抓取!!! 本博客唯一合法URL: 总体考虑 要去写设备驱动程序,说白了就三大步骤:下载内核源码构建内核源码树(也就是下载你的 ...
- Exif Info 隐私政策
隐私政策 本应用尊重并保护所有使用服务用户的个人隐私权.为了给您提供更准确.更有个性化的服务,本应用会按照本隐私权政策的规定使用和披露您的个人信息.但本应用将以高度的勤勉.审慎义务对待这些信息.除本隐 ...
- 从setTimeout看js函数执行
老实说,写这篇文章的时候心里是有点压抑的,因为受到打击了,为什么?就 因为喜欢折腾不小心看到了这个"简单"的函数: for (var i = 0; i < 5; ...
- BFS求最短路 Abbottt's Revenge UVa 816
本题的题意是输入起点,朝向和终点,求一条最短路径(多解时任意输出一个即可) 本题的主要代码是bfs求解,就是以下代码中的slove的主要部分,通过起点按照路径的长度来寻找最短路径,输出最先到终点的一系 ...
- python爬虫(六)_urllib2:handle处理器和自定义opener
本文将介绍handler处理器和自定义opener,更多内容请参考:python学习指南 opener和handleer 我们之前一直使用的是urllib2.urlopen(url)这种形式来打开网页 ...