我们的项目中用apschedule作为核心定时调度模块。所以对apschedule进行了一些调查和源码级的分析。

1、为什么选择apschedule?

听信了一句话,apschedule之于python就像是quartz之于java。实际用起来还是不错的。

2、安装

# pip安装方式
$ pip install apscheduler
# 源码编译方式
$ wget https://pypi.python.org/pypi/APScheduler/#downloads
$ python setup.py install

3、apschedule有四个主要的组件

1)trigger - 触发器

2)job stores - 任务存储(内存memory和持久化persistence)

3)executor - 执行器(实现是基于concurrent.futures的线程池或者进程池)

4)schedulers - 调度器(控制着其他的组件,最常用的是background方式和blocking方式)

先上一个例子

# -*- coding:utf-8 -*-
import redis
from datetime import datetime, timedelta
from apscheduler.schedulers.background import BackgroundScheduler
from apscheduler.jobstores.redis import RedisJobStore
from apscheduler.jobstores.sqlalchemy import SQLAlchemyJobStore
from apscheduler.executors.pool import ThreadPoolExecutor, ProcessPoolExecutor
from apscheduler.events import EVENT_JOB_MAX_INSTANCES, EVENT_JOB_ERROR, EVENT_JOB_MISSED
class ScheduleFactory(object):
def __init__(self):
if not hasattr(ScheduleFactory, '__scheduler'):
__scheduler = ScheduleFactory.get_instance()
self.scheduler = __scheduler @staticmethod
def get_instance():
pool = redis.ConnectionPool(
host='10.94.99.56',
port=6379,
)
r = redis.StrictRedis(connection_pool=pool)
jobstores = {
'redis': RedisJobStore(2, r),
'default': SQLAlchemyJobStore(url='sqlite:///jobs.sqlite')
}
executors = {
'default': ThreadPoolExecutor(max_workers=30),
'processpool': ProcessPoolExecutor(max_workers=30)
}
job_defaults = {
'coalesce': False,
'max_instances': 3
}
scheduler = BackgroundScheduler(jobstores=jobstores, executors=executors, job_defaults=job_defaults, daemonic=False)
return scheduler

说明:上例中,scheduleFactory被实现为一个单例模式,保证new出的对象全局唯一

4、对scheduler的选择

这里只给出两个场景:

1)BackgroundScheduler:这种方式在创建scheduler的父进程退出后,任务同时停止调度。适用范围:集成在服务中,例如django。

2)BlockingScheduler:这种方式会阻塞住创建shceduler的进程,适用范围:该程序只干调度这一件事情。

选择完调度器之后

1)scheduler.start() 启动调度器

2)scheduler.shutdown() 停止调度器,调用该方法,调度器等到所有执行中的任务执行完成再退出,可以使用wait=False禁用

程序变为如下样子

class ScheduleFactory(object):
def __init__(self):
if not hasattr(ScheduleFactory, '__scheduler'):
__scheduler = ScheduleFactory.get_instance()
self.scheduler = __scheduler @staticmethod
def get_instance():
pool = redis.ConnectionPool(
host='10.94.99.56',
port=6379,
)
r = redis.StrictRedis(connection_pool=pool)
jobstores = {
'redis': RedisJobStore(2, r),
'default': SQLAlchemyJobStore(url='sqlite:///jobs.sqlite')
}
executors = {
'default': ThreadPoolExecutor(max_workers=30),
'processpool': ProcessPoolExecutor(max_workers=30)
}
job_defaults = {
'coalesce': False,
'max_instances': 3
}
scheduler = BackgroundScheduler(jobstores=jobstores, executors=executors, job_defaults=job_defaults, daemonic=False)
# scheduler = BlockingScheduler(jobstores=jobstores, executors=executors, job_defaults=job_defaults, daemonic=False)
return scheduler def start(self):
self.scheduler.start() def shutdown(self):
self.scheduler.shutdown()

5、对jobstores的选择

大的方向有两个:

1)非持久化

可选的stores:MemoryJobStrore

适用于你不会频繁启动和关闭调度器,而且对定时任务丢失批次不敏感。

2)持久化

可选的stores:SQLAlchemyJobStore, RedisJobStore,MongoDBJobStore,ZooKeeperJobStore

适用于你对定时任务丢失批次敏感的情况

jobStores初始化配置的方式是使用一个字典,例如

jobstores = {
'redis': RedisJobStore(2, r),
'default': SQLAlchemyJobStore(url='sqlite:///jobs.sqlite')
}

key是你配置store的名字,后面在添加任务的使用,可以指定对应的任务使用对应的store,例如这里选用的都是key=default的store。

def add_job(self, job_func, interval, id, job_func_params=None)
self.scheduler.add_job(job_func, jobstore='default', trigger='interval', seconds=interval, id=id, kwargs=job_func_params, executor='default', next_run_time=next_run_time, misfire_grace_time=30)

6、executor的选择

只说两个,线程池和进程池。默认default是线程池方式。这个数是执行任务的实际并发数,如果你设置的小了而job添加的比较多,可能出现丢失调度的情况。

同时对于python多线程场景,如果是计算密集型任务,实际的并发度达不到配置的数量。所以这个数字要根据具体的要求设置。

一般来说我们设置并发为30,对一般的场景是没有问题的。

executors = {
'default': ThreadPoolExecutor(max_workers=30),
'processpool': ProcessPoolExecutor(max_workers=30)
}

同样在add_job的时候,我们可以选择对应的执行器

def add_job(self, job_func, interval, id, job_func_params=None)
self.scheduler.add_job(job_func, jobstore='default', trigger='interval', seconds=interval, id=id, kwargs=job_func_params, executor='default', next_run_time=next_run_time, misfire_grace_time=30)

7、trigger的选择

这是最简单的一个了,有三种,不用配置

1、date - 每天的固定时间

2、interval - 间隔多长时间执行

3、cron - 正则

8、job的增删改查接口api可以参看手册

http://apscheduler.readthedocs.io/en/latest/userguide.html#choosing-the-right-scheduler-job-store-s-executor-s-and-trigger-s

9、问题fix

1)2017-07-24 14:06:28,480 [apscheduler.executors.default:120] [WARNING]- Run time of job "etl_func (trigger: interval[0:01:00], next run at: 2017-07-24 14:07:27 CST)" was missed by 0:00:01.245424

这个问题对应的源码片段是

def run_job(job, jobstore_alias, run_times, logger_name):
"""
Called by executors to run the job. Returns a list of scheduler events to be dispatched by the
scheduler. """
events = []
logger = logging.getLogger(logger_name)
for run_time in run_times:
# See if the job missed its run time window, and handle
# possible misfires accordingly
if job.misfire_grace_time is not None:
difference = datetime.now(utc) - run_time
grace_time = timedelta(seconds=job.misfire_grace_time)
if difference > grace_time:
events.append(JobExecutionEvent(EVENT_JOB_MISSED, job.id, jobstore_alias,
run_time))
logger.warning('Run time of job "%s" was missed by %s', job, difference)
continue logger.info('Running job "%s" (scheduled at %s)', job, run_time)
try:
retval = job.func(*job.args, **job.kwargs)
except:
exc, tb = sys.exc_info()[1:]
formatted_tb = ''.join(format_tb(tb))
events.append(JobExecutionEvent(EVENT_JOB_ERROR, job.id, jobstore_alias, run_time,
exception=exc, traceback=formatted_tb))
logger.exception('Job "%s" raised an exception', job)
else:
events.append(JobExecutionEvent(EVENT_JOB_EXECUTED, job.id, jobstore_alias, run_time,
retval=retval))
logger.info('Job "%s" executed successfully', job) return events

这里面有个参数是misfire_grace_time,默认是1s,如果任务的实际执行时间与任务调度时间的时间差>misfire_grace_time,就会warning并且跳过这次任务的调度!!!

为什么会发生这个问题?

1)executor并发度不够,你添加的任务太多

2) misfire_grace_time,还是太小了

2)如果你使用的trigger=interval,并且设置了misfire_grace_time=30这种的话,如果你首次启动的时间是10:50那么调度间隔和实际执行可能有1分钟的误差

怎么解决这个问题呢,你可以通过next_run_time设置首次调度的时间,让这个时间取整分钟。例如

def add_job(self, job_func, interval, id, job_func_params=None):
next_minute = (datetime.now() + timedelta(minutes=1)).strftime("%Y-%m-%d %H:%M")
next_run_time = datetime.strptime(next_minute, "%Y-%m-%d %H:%M")
self.scheduler.add_job(job_func, jobstore='default', trigger='interval', seconds=interval, id=id, kwargs=job_func_params, executor='default', next_run_time=next_run_time, misfire_grace_time=30)

3)2017-07-25 11:02:00,003 [apscheduler.scheduler:962] [WARNING]- Execution of job "rule_func (trigger: interval[0:01:00], next run at: 2017-07-25 11:02:00 CST)" skipped: maximum number of running instances reached (1)

对应的源码为

         for job in due_jobs:
# Look up the job's executor
try:
executor = self._lookup_executor(job.executor)
except:
self._logger.error(
'Executor lookup ("%s") failed for job "%s" -- removing it from the '
'job store', job.executor, job)
self.remove_job(job.id, jobstore_alias)
continue run_times = job._get_run_times(now)
run_times = run_times[-1:] if run_times and job.coalesce else run_times
if run_times:
try:
executor.submit_job(job, run_times)
except MaxInstancesReachedError:
self._logger.warning(
'Execution of job "%s" skipped: maximum number of running '
'instances reached (%d)', job, job.max_instances)
event = JobSubmissionEvent(EVENT_JOB_MAX_INSTANCES, job.id,
jobstore_alias, run_times)
events.append(event)

submit_job的源码

    with self._lock:
if self._instances[job.id] >= job.max_instances:
raise MaxInstancesReachedError(job) self._do_submit_job(job, run_times)
self._instances[job.id] += 1

这是什么意思呢,当对一个job的一次调度的任务数>max_instances,会触发这个异常,并终止调度。例如对一个批次的调度,比如job1,在10:00这次的调度,执行的时候发现有两个任务被添加了。这怎么会发生呢?会。可能09:59分的调度没有成功执行,但是持久化了下来,那么在10:00会尝试再次执行。

max_instances默认是1,如果想让这种异常放过的话,你可以设置max_instances大一些,比如max_instances=3

10、如果你想监控你的调度,那么apschedule提供了listener机制,可以监听一些异常。只需要注册监听者就好

  def add_err_listener(self):
self.scheduler.add_listener(err_listener, EVENT_JOB_MAX_INSTANCES|EVENT_JOB_MISSED|EVENT_JOB_ERROR) def err_listener(ev):
msg = ''
if ev.code == EVENT_JOB_ERROR:
msg = ev.traceback
elif ev.code == EVENT_JOB_MISSED:
msg = 'missed job, job_id:%s, schedule_run_time:%s' % (ev.job_id, ev.scheduled_run_time)
elif ev.code == EVENT_JOB_MAX_INSTANCES:
msg = 'reached maximum of running instances, job_id:%s' %(ev.job_id)
rs = RobotSender()
rs.send(
"https://oapi.dingtalk.com/robot/send?access_token=499ca69a2b45402c00503acea611a6ae6a2f1bacb0ca4d33365595d768bb2a58",
u"[apscheduler调度异常] 异常信息:%s" % (msg),
'',
False
)

最后的代码

# -*- coding:utf-8 -*-
import redis
from datetime import datetime, timedelta
from apscheduler.schedulers.background import BackgroundScheduler, BlockingScheduler
from apscheduler.jobstores.redis import RedisJobStore
from apscheduler.jobstores.sqlalchemy import SQLAlchemyJobStore
from apscheduler.executors.pool import ThreadPoolExecutor, ProcessPoolExecutor
from apscheduler.events import EVENT_JOB_MAX_INSTANCES, EVENT_JOB_ERROR, EVENT_JOB_MISSED
from alarmkits.send_robot import RobotSender class ScheduleFactory(object):
def __init__(self):
if not hasattr(ScheduleFactory, '__scheduler'):
__scheduler = ScheduleFactory.get_instance()
self.scheduler = __scheduler @staticmethod
def get_instance():
pool = redis.ConnectionPool(
host='10.94.99.56',
port=6379,
)
r = redis.StrictRedis(connection_pool=pool)
jobstores = {
'redis': RedisJobStore(2, r),
'default': SQLAlchemyJobStore(url='sqlite:///jobs.sqlite')
}
executors = {
'default': ThreadPoolExecutor(max_workers=30),
'processpool': ProcessPoolExecutor(max_workers=30)
}
job_defaults = {
'coalesce': False,
'max_instances': 3
}
scheduler = BackgroundScheduler(jobstores=jobstores, executors=executors, job_defaults=job_defaults, daemonic=False)
# scheduler = BlockingScheduler(jobstores=jobstores, executors=executors, job_defaults=job_defaults, daemonic=False)
return scheduler def start(self):
self.scheduler.start() def shutdown(self):
self.scheduler.shutdown() def add_job(self, job_func, interval, id, job_func_params=None):
next_minute = (datetime.now() + timedelta(minutes=1)).strftime("%Y-%m-%d %H:%M")
next_run_time = datetime.strptime(next_minute, "%Y-%m-%d %H:%M")
self.scheduler.add_job(
job_func,
jobstore='default',
trigger='interval',
seconds=interval,
id=id,
kwargs=job_func_params,
executor='default',
next_run_time=next_run_time,
misfire_grace_time=30,
max_instances=3
) def remove_job(self, id):
self.scheduler.remove_job(id) def modify_job(self, id, interval):
self.scheduler.modify_job(job_id=id, seconds=interval) def add_err_listener(self):
self.scheduler.add_listener(err_listener, EVENT_JOB_MAX_INSTANCES|EVENT_JOB_MISSED|EVENT_JOB_ERROR) def err_listener(ev):
msg = ''
if ev.code == EVENT_JOB_ERROR:
msg = ev.traceback
elif ev.code == EVENT_JOB_MISSED:
msg = 'missed job, job_id:%s, schedule_run_time:%s' % (ev.job_id, ev.scheduled_run_time)
elif ev.code == EVENT_JOB_MAX_INSTANCES:
msg = 'reached maximum of running instances, job_id:%s' %(ev.job_id)
rs = RobotSender()
rs.send(
"https://oapi.dingtalk.com/robot/send?access_token=499ca69a2b45402c00503acea611a6ae6a2f1bacb0ca4d33365595d768bb2a58",
u"[apscheduler调度异常] 异常信息:%s" % (msg),
'',
False
)

python apschedule安装使用与源码分析的更多相关文章

  1. cstore_fdw的安装使用以及源码分析

    一.cstore_fdw的简介 https://github.com/citusdata/cstore_fdw,此外部表扩展是由citusdata公司开发,使用RC_file格式对数据进行列式存储. ...

  2. python 从SocketServer到 WSGIServer 源码分析、

    python 下有个wsgi的封装库.wsgiref. WSGI 指的是 Web服务器网关接口(Python Web Server Gateway Interface) django的runserve ...

  3. Python之Django rest_Framework框架源码分析

    #!/usr/bin/env python # -*- coding:utf-8 -*- from rest_framework.views import APIView from rest_fram ...

  4. Python之contextlib库及源码分析

    Utilities for with-statement contexts __all__ = ["contextmanager", "closing", &q ...

  5. Python yield与实现(源码分析 转)

    转自:https://www.cnblogs.com/coder2012/p/4990834.html

  6. [python] 基于词云的关键词提取:wordcloud的使用、源码分析、中文词云生成和代码重写

    1. 词云简介 词云,又称文字云.标签云,是对文本数据中出现频率较高的“关键词”在视觉上的突出呈现,形成关键词的渲染形成类似云一样的彩色图片,从而一眼就可以领略文本数据的主要表达意思.常见于博客.微博 ...

  7. angular源码分析:angular源代码的获取与编译环境安装

    一.安装git客户端 1.windows环境推荐使用TortoiseGit. 官网地址:http://tortoisegit.org 下载地址:http://tortoisegit.org/downl ...

  8. Python之美[从菜鸟到高手]--urlparse源码分析

    urlparse是用来解析url格式的,url格式如下:protocol :// hostname[:port] / path / [;parameters][?query]#fragment,其中; ...

  9. eos源码分析和应用(一)调试环境搭建

    转载自 http://www.limerence2017.com/2018/09/02/eos1/#more eos基于区块链技术实现的开源引擎,开发人员可以基于该引擎开发DAPP(分布式应用).下面 ...

随机推荐

  1. 第六次meeting会议

    [Beta] 第六次Daily Scrum Meeting 一.本次会议为第六次meeting会议 二.时间:10:00AM-10:20AM 地点:禹州楼 三.会议站立式照片 四.今日任务安排 成员 ...

  2. oop作业二—circle

    oop作业-circle 题目描述 编写一个程序,要求根据给定的圆的半径求圆的面积,并将求得的结果打印出来. 要求: 输入输出采用cin和cout. 建立一个工程,将程序写成两个.cpp和一个.h的形 ...

  3. 201521123091 《Java程序设计》第13周学习总结

    Java 第十三周总结 第十三周的作业. 目录 1.本章学习总结 2.Java Q&A 3.码云上代码提交记录及PTA实验总结 4.课后阅读 1.本章学习总结 1.1 以你喜欢的方式(思维导图 ...

  4. [转载] java中静态代码块的用法 static用法详解

    一.java 静态代码块 静态方法区别 一般情况下,如果有些代码必须在项目启动的时候就执行的时候,需要使用静态代码块,这种代码是主动执行的;需要在项目启动的时候就初始化,在不创建对象的情况下,其他程序 ...

  5. 201521123074 《Java程序设计》第4周学习总结

    1.本周学习总结 这次用XMind画的图,果然比百度脑图好用一点. 2.书面作业 Q1.注释的应用 使用类的注释与方法的注释为前面编写的类与方法进行注释,并在Eclipse中查看.(截图) 类注释 方 ...

  6. 201521123010 《Java程序设计》第2周学习总结

    1. 本周学习总结 这周学习了在JAVA里各种数据类型的使用.各种运算符的使用.表达是的使用,还初步学习了枚举的用法,也掌握了一些枚举和switch语句结合的用法,还了解了一些字符串类.在实验课上也学 ...

  7. 201521123117 《Java程序设计》第2周学习总结

    本周学习总结: 1.String常量,创建之后不能再进行修改 2.类管理机制是包. 3.Java数组的使用. 书面作业: Q1:使用Eclipse关联jdk源代码,并查看String对象的源代码(截图 ...

  8. 201521123086 《Java程序设计》第9周学习总结

    本章学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结异常相关内容. (1)使用try...catch语句捕获异常(try块后可跟一个或多个catch块,注意子类异常要放在父类异常前面,否则子 ...

  9. 201521123097《Java程序设计》第十周学习总结

    1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结异常与多线程相关内容. 2. 书面作业 1.finally 题目4-2 1.1 截图你的提交结果(出现学号) 1.2 4-2中fin ...

  10. Easyui DataGrid DateRange Filter 漂亮实用的日期区间段筛选功能

    自定义扩展Jquery easyui datagrid filter组件实现对日期类型区间段的筛选功能.显示效果如一下 是不是非常实用 引用的jquery 组件是 Date Range Picker ...