Complete the Sequence

Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 202    Accepted Submission(s): 119

Problem Description
You probably know those quizzes in Sunday magazines: given the sequence 1, 2, 3, 4, 5, what is the next number? Sometimes it is very easy to answer, sometimes it could be pretty hard. Because these "sequence problems" are very popular, ACM wants to implement them into the "Free Time" section of their new WAP portal.
ACM programmers have noticed that some of the quizzes can be solved by describing the sequence by polynomials. For example, the sequence 1, 2, 3, 4, 5 can be easily understood as a trivial polynomial. The next number is 6. But even more complex sequences, like 1, 2, 4, 7, 11, can be described by a polynomial. In this case, 1/2.n^2-1/2.n+1 can be used. Note that even if the members of the sequence are integers, polynomial coefficients may be any real numbers.

Polynomial is an expression in the following form:

P(n) = aD.n^D+aD-1.n^D-1+...+a1.n+a0

. If aD <> 0, the number D is called a degree of the polynomial. Note that constant function P(n) = C can be considered as polynomial of degree 0, and the zero function P(n) = 0 is usually defined to have degree -1.

Input
There is a single positive integer T on the first line of input. It stands for the number of test cases to follow. Each test case consists of two lines. First line of each test case contains two integer numbers S and C separated by a single space, 1 <= S < 100, 1 <= C < 100, (S+C) <= 100. The first number, S, stands for the length of the given sequence, the second number, C is the amount of numbers you are to find to complete the sequence.

The second line of each test case contains S integer numbers X1, X2, ... XS separated by a space. These numbers form the given sequence. The sequence can always be described by a polynomial P(n) such that for every i, Xi = P(i). Among these polynomials, we can find the polynomial Pmin with the lowest possible degree. This polynomial should be used for completing the sequence.

Output
For every test case, your program must print a single line containing C integer numbers, separated by a space. These numbers are the values completing the sequence according to the polynomial of the lowest possible degree. In other words, you are to print values Pmin(S+1), Pmin(S+2), .... Pmin(S+C).

It is guaranteed that the results Pmin(S+i) will be non-negative and will fit into the standard integer type.

Sample Input
4
6 3
1 2 3 4 5 6
8 2
1 2 4 7 11 16 22 29
10 2
1 1 1 1 1 1 1 1 1 2
1 10
3

Sample Output
7 8 9
37 46
11 56
3 3 3 3 3 3 3 3 3 3

Source
Central Europe 2000

Recommend
JGShining

不断两两作差直到全部相等或只剩一个元素,之后递推求解.

#include<stdio.h>
int y[200][200];
int S,C;
bool finish(int x)
{
int i;
for (i=1+x;i<S;i++)
if (y[x][i]!=y[x][i+1]) return false;
return true;
}
int main()
{
int T,i,j;
scanf("%d",&T);
while (T--)
{
scanf("%d%d",&S,&C);
for (i=1;i<=S;i++) scanf("%d",&y[0][i]);
int D=0;
while (!finish(D))
{
D++;
for (i=1+D;i<=S;i++) y[D][i]=y[D-1][i]-y[D-1][i-1];
}
for (i=1;i<=C;i++) y[D][S+i]=y[D][S+i-1];
for (i=D-1;i>=0;i--)
for (j=1;j<=C;j++)
y[i][S+j]=y[i][S+j-1]+y[i+1][S+j];
for (i=1;i<C;i++) printf("%d ",y[0][S+i]);
printf("%d\n",y[0][S+C]);
}
return 0;
}

Complete the Sequence[HDU1121]的更多相关文章

  1. UVA 1546 - Complete the sequence!(差分法)

    UVA 1546 - Complete the sequence! 题目链接 题意:给定多项式前s项,求出后c项,要求尽量小 思路:利用差分法,对原序列求s - 1次差分,就能够发现规律,然后对于每多 ...

  2. HDU 1121 Complete the Sequence 差分

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1121 Complete the Sequence Time Limit: 3000/1000 MS ...

  3. HDOJ 1121 Complete the Sequence

    [题目大意]有一个数列P,它的第i项是当x=i时,一个关于x的整式的值.给出数列的前S项,你需要输出它的第S+1项到第S+C项,并且使整式的次数最低.多测. [数据范围]数据组数≤5000,S+C≤1 ...

  4. Complete the Sequence HDU - 1121

    题目大意: 输入两个数n和m,n表示有n个数,这n个数是一个多项式的前n项,让输出这个序列的n+1,n+2,..n+m项. 题解:差分规律,一直差分,直到全为0或者只剩下一个数.然后再递推回去. 给出 ...

  5. Complete the sequence! POJ - 1398 差分方法找数列规律

    参考链接:http://rchardx.is-programmer.com/posts/16142.html vj题目链接:https://vjudge.net/contest/273000#stat ...

  6. [C7] Andrew Ng - Sequence Models

    About this Course This course will teach you how to build models for natural language, audio, and ot ...

  7. RNN 入门教程 Part 1 – RNN 简介

    转载 - Recurrent Neural Networks Tutorial, Part 1 – Introduction to RNNs Recurrent Neural Networks (RN ...

  8. ant新建scp和sshexec任务

    1.build.xml中新建targer如下: <target name="remotecopytest" description="拷贝文件到远程服务器" ...

  9. requirejs源码

    require.js /** vim: et:ts=4:sw=4:sts=4 * @license RequireJS 2.1.11 Copyright (c) 2010-2014, The Dojo ...

随机推荐

  1. 7 Types of Regression Techniques you should know!

    翻译来自:http://news.csdn.net/article_preview.html?preview=1&reload=1&arcid=2825492 摘要:本文解释了回归分析 ...

  2. Python win7下 django-admin.py startproject mysite命令没有创建mysite?

    解决方案 解决:这个命令在XP下正常(我没试过),我用的win7,无法创建.这属于django的一个bug. 方法是:修改注册表中 HKEY_CLASSES_ROOT/Applications/pyt ...

  3. linux ls正则表达式

    ls就是默认排序的. 所以: ls只支持通配符,不支持正则,所以单纯用ls是不能实现的. 一些正则过滤操作需要结合支持正则的命令如grep.sed或awk. 例如:ls | grep "[0 ...

  4. Android自定义Dialog

    Android开发过程中,常常会遇到一些需求场景——在界面上弹出一个弹框,对用户进行提醒并让用户进行某些选择性的操作, 如退出登录时的弹窗,让用户选择“退出”还是“取消”等操作. Android系统提 ...

  5. ios抓包官方文档

    OS X Programs OS X supports a wide range of packet trace programs, as described in the following sec ...

  6. python在线文档

    中文 http://python.usyiyi.cn/--------------------------不完整 http://www.pythondoc.com/pythontutorial27/i ...

  7. UEditor去除复制样式实现无格式粘贴

    UEditor内置了无格式粘贴的功能,只需要简单的配置即可. 1.修改ueditor.config.js,开启retainOnlyLabelPasted,并设置为true 2.开启pasteplain ...

  8. iOS 的UIWindow 类研究

    今日发现如果想做出漂亮的界面效果,就需要仔细研究一下UIWindow这个类.现在还不清楚为什么要有这么一个UIWindow类,它跟UIView的根本区别是什么?和Android中的什么类比较相像.先做 ...

  9. Java for LeetCode 023 Merge k Sorted Lists

    Merge k sorted linked lists and return it as one sorted list. Analyze and describe its complexity. 解 ...

  10. linux(Ubuntu)安装QQ2013

    首先简述自己的系统配置:win7+ ubuntu12.04 linuxQQ 有各种版本,这里介绍两种:linuxQQ 和 wineQQ 1 ------linuxqq是QQ简化版,功能很少,界面很差, ...