Complete the Sequence

Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 202    Accepted Submission(s): 119

Problem Description
You probably know those quizzes in Sunday magazines: given the sequence 1, 2, 3, 4, 5, what is the next number? Sometimes it is very easy to answer, sometimes it could be pretty hard. Because these "sequence problems" are very popular, ACM wants to implement them into the "Free Time" section of their new WAP portal.
ACM programmers have noticed that some of the quizzes can be solved by describing the sequence by polynomials. For example, the sequence 1, 2, 3, 4, 5 can be easily understood as a trivial polynomial. The next number is 6. But even more complex sequences, like 1, 2, 4, 7, 11, can be described by a polynomial. In this case, 1/2.n^2-1/2.n+1 can be used. Note that even if the members of the sequence are integers, polynomial coefficients may be any real numbers.

Polynomial is an expression in the following form:

P(n) = aD.n^D+aD-1.n^D-1+...+a1.n+a0

. If aD <> 0, the number D is called a degree of the polynomial. Note that constant function P(n) = C can be considered as polynomial of degree 0, and the zero function P(n) = 0 is usually defined to have degree -1.

Input
There is a single positive integer T on the first line of input. It stands for the number of test cases to follow. Each test case consists of two lines. First line of each test case contains two integer numbers S and C separated by a single space, 1 <= S < 100, 1 <= C < 100, (S+C) <= 100. The first number, S, stands for the length of the given sequence, the second number, C is the amount of numbers you are to find to complete the sequence.

The second line of each test case contains S integer numbers X1, X2, ... XS separated by a space. These numbers form the given sequence. The sequence can always be described by a polynomial P(n) such that for every i, Xi = P(i). Among these polynomials, we can find the polynomial Pmin with the lowest possible degree. This polynomial should be used for completing the sequence.

Output
For every test case, your program must print a single line containing C integer numbers, separated by a space. These numbers are the values completing the sequence according to the polynomial of the lowest possible degree. In other words, you are to print values Pmin(S+1), Pmin(S+2), .... Pmin(S+C).

It is guaranteed that the results Pmin(S+i) will be non-negative and will fit into the standard integer type.

Sample Input
4
6 3
1 2 3 4 5 6
8 2
1 2 4 7 11 16 22 29
10 2
1 1 1 1 1 1 1 1 1 2
1 10
3

Sample Output
7 8 9
37 46
11 56
3 3 3 3 3 3 3 3 3 3

Source
Central Europe 2000

Recommend
JGShining

不断两两作差直到全部相等或只剩一个元素,之后递推求解.

#include<stdio.h>
int y[200][200];
int S,C;
bool finish(int x)
{
int i;
for (i=1+x;i<S;i++)
if (y[x][i]!=y[x][i+1]) return false;
return true;
}
int main()
{
int T,i,j;
scanf("%d",&T);
while (T--)
{
scanf("%d%d",&S,&C);
for (i=1;i<=S;i++) scanf("%d",&y[0][i]);
int D=0;
while (!finish(D))
{
D++;
for (i=1+D;i<=S;i++) y[D][i]=y[D-1][i]-y[D-1][i-1];
}
for (i=1;i<=C;i++) y[D][S+i]=y[D][S+i-1];
for (i=D-1;i>=0;i--)
for (j=1;j<=C;j++)
y[i][S+j]=y[i][S+j-1]+y[i+1][S+j];
for (i=1;i<C;i++) printf("%d ",y[0][S+i]);
printf("%d\n",y[0][S+C]);
}
return 0;
}

Complete the Sequence[HDU1121]的更多相关文章

  1. UVA 1546 - Complete the sequence!(差分法)

    UVA 1546 - Complete the sequence! 题目链接 题意:给定多项式前s项,求出后c项,要求尽量小 思路:利用差分法,对原序列求s - 1次差分,就能够发现规律,然后对于每多 ...

  2. HDU 1121 Complete the Sequence 差分

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1121 Complete the Sequence Time Limit: 3000/1000 MS ...

  3. HDOJ 1121 Complete the Sequence

    [题目大意]有一个数列P,它的第i项是当x=i时,一个关于x的整式的值.给出数列的前S项,你需要输出它的第S+1项到第S+C项,并且使整式的次数最低.多测. [数据范围]数据组数≤5000,S+C≤1 ...

  4. Complete the Sequence HDU - 1121

    题目大意: 输入两个数n和m,n表示有n个数,这n个数是一个多项式的前n项,让输出这个序列的n+1,n+2,..n+m项. 题解:差分规律,一直差分,直到全为0或者只剩下一个数.然后再递推回去. 给出 ...

  5. Complete the sequence! POJ - 1398 差分方法找数列规律

    参考链接:http://rchardx.is-programmer.com/posts/16142.html vj题目链接:https://vjudge.net/contest/273000#stat ...

  6. [C7] Andrew Ng - Sequence Models

    About this Course This course will teach you how to build models for natural language, audio, and ot ...

  7. RNN 入门教程 Part 1 – RNN 简介

    转载 - Recurrent Neural Networks Tutorial, Part 1 – Introduction to RNNs Recurrent Neural Networks (RN ...

  8. ant新建scp和sshexec任务

    1.build.xml中新建targer如下: <target name="remotecopytest" description="拷贝文件到远程服务器" ...

  9. requirejs源码

    require.js /** vim: et:ts=4:sw=4:sts=4 * @license RequireJS 2.1.11 Copyright (c) 2010-2014, The Dojo ...

随机推荐

  1. NGUI 图集生成 图片Sprite 有撕裂边的问题

    修改 Dimensions 的 X 和 Y值进行调整. 在生成图集时 选择Padding 设置1以上 应该不会出现这个问题.

  2. unity3d 截屏

    原地址:http://www.cnblogs.com/88999660/archive/2013/01/21/2869747.html void OnGUI(){ if(GUI.Button(new ...

  3. hiho一下 第九十八周 搜索一·24点

    题目1 : 搜索一·24点 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 周末,小Hi和小Ho都在家待着. 在收拾完房间时,小Ho偶然发现了一副扑克,于是两人考虑用这副 ...

  4. Jackson 框架,轻易转换JSON

    Jackson 框架,轻易转换JSON Jackson可以轻松的将Java对象转换成json对象和xml文档,同样也可以将json.xml转换成Java对象. 前面有介绍过json-lib这个框架,在 ...

  5. poj1860 bellman—ford队列优化 Currency Exchange

    Currency Exchange Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 22123   Accepted: 799 ...

  6. Linux rpm安装问题解决

    1.安装时提示:warning: *.rpm: Header V3 RSA/SHA256 Signature, keykey ID c105b9de: NOKEY 解决的方法就是在rpm 语句后面加上 ...

  7. OpenGL实现三维立方体交互

    http://yunpan.cn/cs62JgxTNs98C  (提取码:668e)

  8. centos安装ssdb

    在编译之前要下gcc编译器 yum -y install gcc*   编译和安装 wget --no-check-certificate https://github.com/ideawu/ssdb ...

  9. SphinxSE的安装

    SphinxSE 的使用 SphinxSE 的使用 :wiki SphinxSE是一个可以编译进MySQL 5.x版本的MySQL存储引擎,尽管被称作“存储引擎”,SphinxSE自身其实并不存储任何 ...

  10. JavaScript常用事件

    一般事件 事件 浏览器支持 描述 onClick HTML: 2 | 3 | 3.2 | 4   Browser: IE3 | N2 | O3 鼠标点击事件,多用在某个对象控制的范围内的鼠标点击 on ...