[BZOJ2820]YY的GCD
[BZOJ2820]YY的GCD
试题描述
输入
输出
输入示例
输出示例
数据规模及约定
T = 10000
N, M <= 10000000
题解
设

易知
……式1
根据莫比乌斯反演有
……式2
根据 式1 和 式2 可得

我们要求这个

不妨令
,那么我们可以用线性筛求出每一个 g(T),递推式如下:(对于一个质数 k)

然后
这部分我们可以分块计算,即将所有相同的 [n/T][m/T] 利用乘法分配律只计算一次,这样就不会被卡成暴力了。
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
using namespace std; const int BufferSize = 1 << 16;
char buffer[BufferSize], *Head, *Tail;
inline char Getchar() {
if(Head == Tail) {
int l = fread(buffer, 1, BufferSize, stdin);
Tail = (Head = buffer) + l;
}
return *Head++;
}
int read() {
int x = 0, f = 1; char c = Getchar();
while(!isdigit(c)){ if(c == '-') f = -1; c = Getchar(); }
while(isdigit(c)){ x = x * 10 + c - '0'; c = Getchar(); }
return x * f;
} #define maxn 10000010
#define LL long long
int T, n, m; int prime[maxn], cnt, u[maxn], g[maxn];
LL sum[maxn];
bool vis[maxn];
void u_table() {
int N = maxn - 10;
u[1] = 1; g[1] = 0;
for(int i = 2; i <= N; i++) {
if(!vis[i]) prime[++cnt] = i, u[i] = -1, g[i] = 1;
for(int j = 1; j <= cnt && (LL)prime[j] * (LL)i <= (LL)N; j++)
if(i % prime[j]) vis[i*prime[j]] = 1, u[i*prime[j]] = -u[i], g[i*prime[j]] = u[i] - g[i];
else{ vis[i*prime[j]] = 1, u[i*prime[j]] = 0, g[i*prime[j]] = u[i]; break; }
}
for(int i = 1; i <= N; i++) sum[i] = sum[i-1] + (LL)g[i];
return ;
} int main() {
u_table();
T = read(); while(T--) {
n = read(); m = read();
if(n > m) swap(n, m);
int p = 1;
LL ans = 0;
for(; p <= n;) {
int np = p;
p = min(n / (n / np), m / (m / np));
ans += (sum[p] - sum[np-1]) * (LL)(n / np) * (LL)(m / np);
p++;
}
printf("%lld\n", ans);
} return 0;
}
[BZOJ2820]YY的GCD的更多相关文章
- BZOJ2820 YY的GCD 【莫比乌斯反演】
BZOJ2820 YY的GCD Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, ...
- BZOJ2820 YY的GCD 莫比乌斯+系数前缀和
/** 题目:BZOJ2820 YY的GCD 链接:http://www.cogs.pro/cogs/problem/problem.php?pid=2165 题意:神犇YY虐完数论后给傻×kAc出了 ...
- BZOJ2820:YY的GCD(莫比乌斯反演)
Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种 傻×必 ...
- Bzoj-2820 YY的GCD Mobius反演,分块
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2820 题意:多次询问,求1<=x<=N, 1<=y<=M且gcd( ...
- 【莫比乌斯反演】BZOJ2820 YY的GCD
Description 求有多少对(x,y)的gcd为素数,x<=n,y<=m.n,m<=1e7,T<=1e4. Solution 因为题目要求gcd为素数的,那么我们就只考虑 ...
- BZOJ2820: YY的GCD(反演)
题解 题意 题目链接 Sol 反演套路题.. 不多说了,就是先枚举一个质数,再枚举一个约数然后反演一下. 最后可以化成这样子 \[\sum_{i = 1}^n \frac{n}{k} \frac{n} ...
- 【反演复习计划】【bzoj2820】YY的GCD
这题跟2818一样的,只不过数据水一点,可以用多一个log的办法水过去…… 原题意思是求以下式子:$Ans=\sum\limits_{isprime(p)}\sum\limits_{i=1}^{a}\ ...
- bzoj 2820 YY的GCD 莫比乌斯反演
题目大意: 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对 这里就抄一下别人的推断过程了 后面这个g(x) 算的方法就是在线性 ...
- 【BZOJ2820】YY的GCD(莫比乌斯反演)
[BZOJ2820]YY的GCD(莫比乌斯反演) 题面 讨厌权限题!!!提供洛谷题面 题解 单次询问\(O(n)\)是做过的一模一样的题目 但是现在很显然不行了, 于是继续推 \[ans=\sum_{ ...
随机推荐
- RockWare RockWorks的Ollydbg调试过程及注册机(破解)思路
最近拿到了RockWorks15的安装包,可惜没有破解,试用也只能用14天.用PEiD工具察看了一下,Delphi编写的程序,竟然没加壳.本想用OllyDBG调试进去爆破一下,不意发现注册码很简单,如 ...
- [AHOI2013]打地鼠(网络流)
[问题描述] 游戏里一共会冒出来N个地鼠,这些地鼠冒出来的位置都分布在一条直线上.第i个地鼠会在Ti时刻在Xi位置冒出来,打到第i个地鼠的得分是Pi. 当游戏开始时(也就是0时刻) ...
- Coding the Matrix (2):向量空间
1. 线性组合 概念很简单: 当然,这里向量前面的系数都是标量. 2. Span 向量v1,v2,.... ,vn的所有线性组合构成的集合,称为v1,v2,... ,vn的张成(span).向量v1, ...
- zabbix_监控_进程
一.根据进程名称监控 1.创建Item(只能通过进程名.用户过滤进程) http://www.2cto.com/os/201405/302249.html http://www.ithao1 ...
- 配置hibernate
http://blog.csdn.net/hanjiancanxue_liu/article/details/9966423
- [转] 计算几何模板Orz
#include<math.h> #define MAXN 1000 #define offset 10000 #define eps 1e-8 #define PI acos(-1.0) ...
- Mac上的终端(Terminal)启动缓慢
最近重装10.9系统,装完后,发现终端(Terminal)启动之前1秒都不用,现在却需要5-10秒,搜寻了下,发现是终端的统日志导致的问题,只需要执行下下面的命令,终端就又身轻如燕了! sudo rm ...
- Oracle数据分页,并传出数据集
1.创建Package create or replace package forPaged is type my_csr is ref cursor; procedure getPaged(tabl ...
- asp.net在线恢复数据库
用于asp.net还原与恢复SqlServer数据库的KillSpid存储过程 CREATE PROCEDURE KillSpid(@dbName varchar(20)) AS BEGIN DECL ...
- wifi共享小工具
MainForm.cs: using System;using System.Collections.Generic;using System.ComponentModel;using System. ...