[COJ0989]WZJ的数据结构(负十一)
[COJ0989]WZJ的数据结构(负十一)
试题描述
给出以下定义:
1.若子序列[L,R]的极差(最大值-最小值)<=M,则子序列[L,R]为一个均匀序列。
2.均匀序列[L,R]的权值为Sum(L,R)即序列的元素和。
现在给你一个长度为N的整数序列A,请你求出权值前K大的均匀序列,输出K行为它们的权值。
输入
第一行为两个整数N,M,K。
第二行为N个整数Ai。
输出
输出K行,第i行为第i大的均匀序列的权值。
输入示例
输出示例
数据规模及约定
1<=N,K<=100000
0<=|Ai|,M<=10^9
保证原序列至少有K个均匀序列
题解
如果确定了一个区间的左端点 x,那么显然对于均匀序列 [x, y],y 一定在区间 [L, R] 内。于是我们记状态 (x, l, r, v) 表示左端点为 x,右端点在 [l, r] 内,且最大的均匀序列权值为 v,那么我们可以预处理出对于所有的 i,(i, i, r, v) 这个状态,把它扔进堆里,然后每从堆顶取一个元素 (x, l, r, v),我们可以用 RMQ 找到最优的右端点 p(即 S[p] - S[x-1] = v,S 为前缀和),使得 p 在 [l, r] 中,那么就输出这个 v,然后把 (x, l, p - 1, v') 和 (x, p + 1, r, v'') 放入堆中(其中 v' 和 v'' 都可以由求区间内最大前缀和得到),进行 k 次即可。
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <stack>
#include <vector>
#include <queue>
#include <cstring>
#include <string>
#include <map>
#include <set>
using namespace std; const int BufferSize = 1 << 16;
char buffer[BufferSize], *Head, *Tail;
inline char Getchar() {
if(Head == Tail) {
int l = fread(buffer, 1, BufferSize, stdin);
Tail = (Head = buffer) + l;
}
return *Head++;
}
int read() {
int x = 0, f = 1; char c = getchar();
while(!isdigit(c)){ if(c == '-') f = -1; c = getchar(); }
while(isdigit(c)){ x = x * 10 + c - '0'; c = getchar(); }
return x * f;
} #define maxn 100010
#define maxlog 21
#define LL long long
int n, m, k;
LL S[maxn], A[maxn]; LL mx2[maxlog][maxn];
int mx[maxlog][maxn], mn[maxlog][maxn], Log[maxn], mxp[maxlog][maxn];
void rmq_init() {
Log[1] = 0;
for(int i = 2; i <= n; i++) Log[i] = Log[i>>1] + 1;
for(int i = 1; i <= n; i++) mx[0][i] = mn[0][i] = A[i];
for(int j = 1; j < maxlog; j++)
for(int i = 1; i + (1 << j) - 1 <= n; i++)
mx[j][i] = max(mx[j-1][i], mx[j-1][i+(1<<j-1)]),
mn[j][i] = min(mn[j-1][i], mn[j-1][i+(1<<j-1)]);
return ;
}
void rmq_init2() {
for(int i = 1; i <= n; i++) mx2[0][i] = S[i], mxp[0][i] = i;
for(int j = 1; j < maxlog; j++)
for(int i = 1; i + (1 << j) - 1 <= n; i++)
if(mx2[j-1][i] > mx2[j-1][i+(1<<j-1)]) mx2[j][i] = mx2[j-1][i], mxp[j][i] = mxp[j-1][i];
else mx2[j][i] = mx2[j-1][i+(1<<j-1)], mxp[j][i] = mxp[j][i] = mxp[j-1][i+(1<<j-1)];
return ;
}
int qmx(int l, int r, int tp) {
int t = Log[r-l+1], len = (1 << t);
if(tp == 1)
return max(mx[t][l], mx[t][r-len+1]);
return mx2[t][l] > mx2[t][r-len+1] ? mxp[t][l] : mxp[t][r-len+1];
}
int qmn(int l, int r) {
int t = Log[r-l+1], len = (1 << t);
return min(mn[t][l], mn[t][r-len+1]);
} struct Node {
int x, l, r; LL v;
bool operator < (const Node& t) const { return v < t.v; }
} ;
priority_queue <Node> Q; int R[maxn];
int main() {
n = read(); m = read(); k = read();
for(int i = 1; i <= n; i++) A[i] = read(), S[i] = S[i-1] + A[i]; rmq_init(); rmq_init2();
int nl = 1, nr = 0;
for(int i = 1; i <= n; i++) {
nr++;
while(qmx(nl, nr, 1) - qmn(nl, nr) > m) nl++;
R[nl] = nr;
// printf("%d %d %d %lld\n", nl, nr, qmx(nl, nr, 2), S[qmx(nl, nr, 2)] - S[nl-1]);
// Q.push((Node){ nl, nl, nr, S[qmx(nl, nr, 2)] - S[nl-1] });
}
for(int i = 1; i <= n; i++) if(!R[i]) R[i] = R[i-1];
for(nl = 1; nl <= n; nl++) {
LL tmp = S[qmx(nl, R[nl], 2)] - S[nl-1];
Q.push((Node){ nl, nl, R[nl], tmp });
// printf("%d %d %lld\n", nl, R[nl], tmp);
}
while(k--) {
Node u = Q.top(); Q.pop();
printf("%lld\n", u.v);
int p = qmx(u.l, u.r, 2);
if(u.l < p) Q.push((Node){ u.x, u.l, p - 1, S[qmx(u.l, p - 1, 2)] - S[u.x-1] });
if(p < u.r) Q.push((Node){ u.x, p + 1, u.r, S[qmx(p + 1, u.r, 2)] - S[u.x-1] });
} return 0;
}
[COJ0989]WZJ的数据结构(负十一)的更多相关文章
- COJ 1011 WZJ的数据结构(十一)树上k大
题解:主席树&DFS序. PS:为什么我一开始Wa了N发 是因为有一个左区间我写成[L,M+1]了.......................... #include<iostream ...
- COJ969 WZJ的数据结构(负三十一)
WZJ的数据结构(负三十一) 难度级别:D: 运行时间限制:3000ms: 运行空间限制:262144KB: 代码长度限制:2000000B 试题描述 A国有两个主基站,供给全国的资源.定义一个主基站 ...
- COJ 0979 WZJ的数据结构(负二十一)
WZJ的数据结构(负二十一) 难度级别:C: 运行时间限制:5000ms: 运行空间限制:262144KB: 代码长度限制:2000000B 试题描述 请你实现一个数据结构,完成这样的功能: 给你一个 ...
- [COJ0985]WZJ的数据结构(负十五)
[COJ0985]WZJ的数据结构(负十五) 试题描述 CHX有一个问题想问问大家.给你一个长度为N的数列A,请你找到两个位置L,R,使得A[L].A[L+1].…….A[R]中没有重复的数,输出R- ...
- [COJ0988]WZJ的数据结构(负十二)
[COJ0988]WZJ的数据结构(负十二) 试题描述 输入 见题目,注意本题不能用文件输入输出 输出 见题目,注意本题不能用文件输入输出 输入示例 输出示例 数据规模及约定 1≤N≤1500,M≤N ...
- COJ966 WZJ的数据结构(负三十四)
WZJ的数据结构(负三十四) 难度级别:C: 运行时间限制:20000ms: 运行空间限制:262144KB: 代码长度限制:2000000B 试题描述 给一棵n个节点的树,请对于形如"u ...
- COJ967 WZJ的数据结构(负三十三)
WZJ的数据结构(负三十三) 难度级别:C: 运行时间限制:7000ms: 运行空间限制:262144KB: 代码长度限制:2000000B 试题描述 请你设计一个数据结构,完成以下功能: 给定一个大 ...
- COJ970 WZJ的数据结构(负三十)
WZJ的数据结构(负三十) 难度级别:D: 运行时间限制:1000ms: 运行空间限制:262144KB: 代码长度限制:2000000B 试题描述 给你一棵N个点的无根树,点和边上均有权值.请你设计 ...
- COJ968 WZJ的数据结构(负三十二)
WZJ的数据结构(负三十二) 难度级别:D: 运行时间限制:5000ms: 运行空间限制:262144KB: 代码长度限制:2000000B 试题描述 给你一棵N个点的无根树,边上均有权值,每个点上有 ...
随机推荐
- Android中图片大小和屏幕密度的关系讲解
Android手机适配是非常让人头疼的一件事,尤其是图片,android为了做到是适配提供了很多文件夹来存放不同大小的图片,比如:drawable-ldpi.drawable-mdpi.drawabl ...
- mysql基础 事务的认识和使用
事务(Transaction)是访问并可能更新数据库中各种数据项的一个程序执行单元(unit).事务是恢复和并发控制的基本单位. 在关系数据库中,一个事务可以是一条SQL语句,一组SQL语句或整个程序 ...
- Java技术路线图
在技术方面无论我们怎么学习,总感觉需要提升自已不知道自己处于什么水平了.但如果有清晰的指示图供参考还是非常不错的,这样我们清楚的知道我们大概处于那个阶段和水平. Java程序员 高级特性 反射.泛型. ...
- [BZOJ 1816][Cqoi2010]扑克牌(二分答案)
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1816 分析: 我先以为是道水题,但是要注意的是每套牌中Joker只能用1张的,所以就出现了可能 ...
- javascript继承(八)-封装
这个系列主要探讨的是javascript面向对象的编程,前面已经着重介绍了一下js的继承,下面想简单的说一下js如何实现封装的特性. 我们知道面向对象的语言实现封装是把成员变量和方法用一个类包围起来, ...
- 第二十四课:jQuery.event.remove,dispatch的源码解读
本课还是来讲解一下jQuery是如何实现它的事件系统的.这一课我们先来讲一下jQuery.event.remove的源码解读. remove方法的目的是,根据用户传参,找到事件队列,从里面把匹配的ha ...
- 【转】document.documentElement和document.body的区别
转自:http://www.cnblogs.com/ckmouse/archive/2012/01/30/2332070.html 网页中获取滚动条卷去部分的高度,可以通过 document.body ...
- 网络流量监控工具----iftop
文章转自:http://www.vpser.net/manage/iftop.html.再次本人只是作为笔记使用,不做其他用途. 日常工作中用它来监控网卡的实时流量,(可以指定网段),反向解析IP.显 ...
- iOS开发小技巧--初始化项目中修改APP安装后的名称
- iOS边练边学--cocoaPods管理第三方框架--命令行方式实现
更换源 Gem是一个管理Ruby库和程序的标准包,它通过Ruby Gem(如 http://rubygems.org/)源来查找.安装.升级和写在软件包 gem sources --remove ht ...