The Bottom of a Graph(tarjan + 缩点)
| Time Limit: 3000MS | Memory Limit: 65536K | |
| Total Submissions: 9139 | Accepted: 3794 |
Description
Let n be a positive integer, and let p=(e1,...,en) be a sequence of length n of edges ei∈E such that ei=(vi,vi+1) for a sequence of vertices (v1,...,vn+1). Then p is called a path from vertex v1 to vertex vn+1in G and we say that vn+1 is reachable from v1, writing (v1→vn+1).
Here are some new definitions. A node v in a graph G=(V,E) is called a sink, if for every node w in G that is reachable from v, v is also reachable from w. The bottom of a graph is the subset of all nodes that are sinks, i.e., bottom(G)={v∈V|∀w∈V:(v→w)⇒(w→v)}. You have to calculate the bottom of certain graphs.
Input
Output

Sample Input
3 3
1 3 2 3 3 1
2 1
1 2
0
Sample Output
1 3
2
Source
参考代码这里:http://blog.csdn.net/ehi11/article/details/7884851
缩点:(这个概念也是看了别人的理解)先求有向图的强连通分量 , 如果几个点同属于一个强连通 , 那就给它们标上相同的记号 , 这样这几个点的集合就形成了一个缩点。
题目大意:求出度为0的强连通分量
#include<stdio.h>
#include<queue>
#include<string.h>
using namespace std;
const int M = ;
int n , m ;
int stack [M] , top = , index = ;
bool instack [M] ;
int dfn[M] , low[M] ;
int cnt = ;
vector <int> e[M] ;
int belong[M] ;
int out[M] ; void init (int n)
{
top = ;
cnt = ;
index = ;
memset (stack , - , sizeof(stack)) ;
memset (instack , , sizeof(instack)) ;
memset (dfn , - , sizeof(dfn)) ;
memset (low , - , sizeof(low)) ;
for (int i = ; i <= n ; i++)
e[i].clear () ;
memset (belong , - , sizeof(belong)) ;
memset (out , , sizeof(out)) ;
} void tarjan (int u)
{
int v ;
dfn[u] = low[u] = index++ ;
instack[u] = true ;
stack[++top] = u ;
for (int i = ; i < e[u].size () ; i++) {
v = e[u][i] ;
if (dfn[v] == -) {
tarjan (v) ;
low[u] = min (low[u] , low[v]) ;
}
else if (instack[v])
low[u] = min (low[u] , dfn[v]) ;
}
if (low[u] == dfn[u]) {
cnt++ ;
do {
v = stack[top--] ;
instack[v] = false ;
belong[v] = cnt ;
} while (u != v) ;
}
} int main ()
{
//freopen ("a.txt" , "r" , stdin) ;
int u , v ;
while (~ scanf ("%d" ,&n)) {
if (n == )
break ;
init (n) ;
scanf ("%d" , &m) ;
while (m--) {
scanf ("%d%d" , &u , &v) ;
e[u].push_back (v) ;
}
for (int i = ; i <= n ; i++) {
if (dfn[i] == -)
tarjan (i) ;
}
for (int i = ; i <= n ; i++) {
for (int j = ; j < e[i].size () ; j++) {
if (belong [i] != belong[e[i][j]])
out[belong[i]] ++;
}
}
int k = ;
for (int i = ; i <= n ; i++) {
if (out[belong[i]] == ) {
if (k++)
printf (" ") ;
printf ("%d" , i) ;
}
}
puts ("") ;
}
return ;
}
The Bottom of a Graph(tarjan + 缩点)的更多相关文章
- POJ2533&&SP1799 The Bottom of a Graph(tarjan+缩点)
POJ2553 SP1799 我们知道单独一个强连通分量中的所有点是满足题目要求的 但如果它连出去到了其他点那里,要么成为新的强连通分量,要么失去原有的符合题目要求的性质 所以只需tarjan缩点求出 ...
- POJ 2553 The Bottom of a Graph Tarjan找环缩点(题解解释输入)
Description We will use the following (standard) definitions from graph theory. Let V be a nonempty ...
- POJ 2553 The Bottom of a Graph (Tarjan)
The Bottom of a Graph Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 11981 Accepted: ...
- poj--2553--The Bottom of a Graph (scc+缩点)
The Bottom of a Graph Time Limit : 6000/3000ms (Java/Other) Memory Limit : 131072/65536K (Java/Oth ...
- [poj 2553]The Bottom of a Graph[Tarjan强连通分量]
题意: 求出度为0的强连通分量. 思路: 缩点 具体有两种实现: 1.遍历所有边, 边的两端点不在同一强连通分量的话, 将出发点所在强连通分量出度+1. #include <cstdio> ...
- POJ 2553 The Bottom of a Graph TarJan算法题解
本题分两步: 1 使用Tarjan算法求全部最大子强连通图.而且标志出来 2 然后遍历这些节点看是否有出射的边,没有的顶点所在的子强连通图的全部点,都是解集. Tarjan算法就是模板算法了. 这里使 ...
- poj 2553 The Bottom of a Graph(强连通分量+缩点)
题目地址:http://poj.org/problem?id=2553 The Bottom of a Graph Time Limit: 3000MS Memory Limit: 65536K ...
- poj 2553 The Bottom of a Graph【强连通分量求汇点个数】
The Bottom of a Graph Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 9641 Accepted: ...
- 【图论】The Bottom of a Graph
[POJ2553]The Bottom of a Graph Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 11182 ...
随机推荐
- C#Winform使用扩展方法自定义富文本框(RichTextBox)字体颜色
在利用C#开发Winform应用程序的时候,我们有可能使用RichTextBox来实现实时显示应用程序日志的功能,日志又分为:一般消息,警告提示 和错误等类别.为了更好地区分不同类型的日志,我们需要使 ...
- 开源搜索引擎Iveely 0.7.0发布,不一样,那就让他不一样!
2012年08月05日,Iveely Search Engine 0.1.0发布,今天,怀着对于未来的追求,终于,0.7.0如期和大家见面了,7个版本,历时2年4个月,感谢大家的支持,感谢我不离不弃的 ...
- Bootstrap系列 -- 34. 按钮下拉菜单
按钮下拉菜单仅从外观上看和上一节介绍的下拉菜单效果基本上是一样的.不同的是在普通的下拉菜单的基础上封装了按钮(.btn)样式效果.简单点说就是点击一个按钮,会显示隐藏的下拉菜单.按钮下拉菜单其实就是普 ...
- AngularJS - 路由入门
我们有很多方法让一个视图随着用户的操作进行变化. 但是,只是单单一个视图就要满足所有的需求会让代码变得非常复杂. 也许我们可以使用ng-include来引用各种模板,但这只限于部分场景. 于是我们可以 ...
- popupwindow与软键盘的问题
1.软键盘弹出时不会改变布局(覆盖页面的效果)android:windowSoftInputMode="adjustPan" 2.软键盘弹出时不会覆盖popuwindowsetSo ...
- easyUI API(version 1.5)
不分先后,只做记录. jquery+easyui培训文档下载地址: 链接: https://pan.baidu.com/s/1dFgFXk9 密码: jj5d 1 easyui-draggable(拖 ...
- u1-nav-css
header:before, header:after ,.navigation:before, .navigation:after,.nav-row:before, .nav-row:after,. ...
- sql-distinct
DISTINCT 找出表格内的不同资料的值 语法 SELECT DISTINCT "栏位名" FROM "表格名"; 例如:要在以下的表格,Store_Info ...
- BZOJ3098 Hash Killer II
Description 这天天气不错,hzhwcmhf神犇给VFleaKing出了一道题: 给你一个长度为N的字符串S,求有多少个不同的长度为L的子串. 子串的定义是S[l].S[l + 1].... ...
- BZOJ4034 T2
Description 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个操作,分为三种: 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子树中所 ...