今天zky学长讲数论,上午水,舒爽的不行。。后来下午直接while(true){懵逼;}死循全程懵逼。。。。(可怕)Thinking Bear。

2190: [SDOI2008]仪仗队

Time Limit: 10 Sec Memory Limit: 259 MB

Submit: 2092 Solved: 1325

[Submit][Status][Discuss]

Description

  作为体育委员,C君负责这次运动会仪仗队的训练。仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是否整齐(如下图)。   

    

现在,C君希望你告诉他队伍整齐时能看到的学生人数。

Input

共一个数N。

Output

共一个数,即C君应看到的学生人数。

Sample Input

  4

Sample Output

  9

HINT

【数据规模和约定】   

对于 100% 的数据,1 ≤ N ≤ 40000

Source

数论

这道题啊,算是我懵逼过程中最水的题了。。于是下课 顺利一遍水过(哦,第一次复制错了。。。CE。。不算!)

这道题,先小数据捯饬捯饬。。发现了规律:

1.除了坐标带0的点,其他的点都满足gcd(x,y)=1,所以累加欧拉函数φ。。然后加上坐标带0的点即可(2个,一成不变)。。

2.然后发现具有对称性。。于是只需要搞上方的三角即可。但是对角线那个点重复了一次所以-1

于是 ans=Σ(φ【1..n-1】)*2+1(+1其实是+2-1)

ps(程序里,欧拉函数的处理没有处理φ【1】所以有个初始值。。思路一样。。)

那么就是筛出欧拉函数即可。。(根据性质:)

性质① m是素数时,有φ(m)=m-1

性质② 当m、n互素时,φ(m*n)=φ(m)*φ(n)

性质③ 对一切正整数n,有φ(p^n)=[p^(n-1)]*(p-1)

奇怪的代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define maxn 40010
long long prime[maxn],phi[maxn];
bool flag[maxn]={0};
int n;
long long ans; void get_phi()
{
memset(flag,0,sizeof(flag));
flag[1]=1;
int cnt=0;
for (int i=2; i<=maxn; i++)
{
if (!flag[i])
prime[cnt++]=i,phi[i]=i-1;
for (int j=0; j<cnt && i*prime[j]<maxn; j++)
{
flag[i*prime[j]]=1;
if (i%prime[j]==0)
{
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
else
phi[i*prime[j]]=phi[i]*(prime[j]-1);
}
}
} int main()
{
scanf("%d",&n);
get_phi();
ans=2;
for (int i=2; i<n; i++)
ans+=phi[i];
printf("%lld",ans*2-1);
return 0;
}

BZOJ-2190 仪仗队 数论+欧拉函数(线性筛)的更多相关文章

  1. bzoj 2190 仪仗队(欧拉函数)

    2190: [SDOI2008]仪仗队 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 2245  Solved: 1413[Submit][Statu ...

  2. BZOJ 2190仪仗队【欧拉函数】

    问题的唯一难点就是如何表示队长能看到的人数?如果建系,队长所在的点为(0,0)分析几组数据就一目了然了,如果队长能看到的点为(m,n),那么gcd(m,n)=1即m n 互质或者是(0,1),(1,0 ...

  3. 【bzoj2190】【仪仗队】欧拉函数+线性筛(浅尝ACM-J)

    向大(hei)佬(e)势力学(di)习(tou) Description 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪 ...

  4. 【bzoj2401】陶陶的难题I “高精度”+欧拉函数+线性筛

    题目描述 求 输入 第一行包含一个正整数T,表示有T组测试数据.接下来T<=10^5行,每行给出一个正整数N,N<=10^6. 输出 包含T行,依次给出对应的答案. 样例输入 7 1 10 ...

  5. 【bzoj2190】[SDOI2008]仪仗队 数论 欧拉函数 筛法

    http://www.lydsy.com/JudgeOnline/problem.php?id=2190   裸欧拉函数,先不计算对角线(a,a)的一列,然后算出1到n-1的所有欧拉函数相加*2,再加 ...

  6. 【bzoj2190】: [SDOI2008]仪仗队 数论-欧拉函数

    [bzoj2190]: [SDOI2008]仪仗队 在第i行当且仅当gcd(i,j)=1 可以被看到 欧拉函数求和 没了 /* http://www.cnblogs.com/karl07/ */ #i ...

  7. bzoj 2818 GCD 数论 欧拉函数

    bzoj[2818]Gcd Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Samp ...

  8. Bzoj 2818: Gcd 莫比乌斯,分块,欧拉函数,线性筛

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 3241  Solved: 1437[Submit][Status][Discuss ...

  9. BZOJ4804 欧拉心算(莫比乌斯反演+欧拉函数+线性筛)

    一通套路后得Σφ(d)μ(D/d)⌊n/D⌋2.显然整除分块,问题在于怎么快速计算φ和μ的狄利克雷卷积.积性函数的卷积还是积性函数,那么线性筛即可.因为μ(pc)=0 (c>=2),所以f(pc ...

随机推荐

  1. Hibernate入门注解笔记

    @Entity 代表实体 映射一张表 @Table 定义表的属性 @Embeddable 定义类级别可以被嵌入 @Id 指定主键 @GeneratedValue 指定主键生成策略 @Column指定列 ...

  2. localStorage实现购物车数量单价和结算页面的实时同步

    While there is life there is hope.一息若存,希望不灭 用localStorage实现简易的购物车数量单价和结算页面两个页面的实时同步: 购物车页面:实时更新页面,在i ...

  3. iOS -数据库网络之xml解析之第三方解析XML

    1.导入第三方插件(GDalaXMLNode)   2.第三方插件配置   libxml/tree.h 路径   在项目属性中--Bulid Settings中搜索 Search   --Search ...

  4. ip routing&no ip routing

    ip routing--------查路由表, 如果ping的目的在RT中没有,不发出任何包(arp也不会发出)   如果RT中存在,则arp  下一跳,相当于no ip routing+配置网关 n ...

  5. Qt——树的搜索

    一.Qt中的树 Qt中树的实现有两种方式.第一种是使用Qt提供的QTreeWidget,很多函数都封装好,比较方便:另一种是通过QTreeView实现,设置它的数据模型,比如使用QStandardIt ...

  6. Bootstrap Paginator 分页插件参数介绍及使用

    Bootstrap Paginator是一款基于Bootstrap的js分页插件,功能很丰富,个人觉得这款插件已经无可挑剔了.它提供了一系列的参数用来支持用户的定制,提供了公共的方法可随时获得插件状态 ...

  7. [MetaHook] R_SparkStreaks

    By hzqst void R_SparkStreaks(vec_t *pos, int count, int velocityMin, int velocityMax) { int i; parti ...

  8. Bootstrap 排版

    Bootstrap 使用 Helvetica Neue. Helvetica. Arial 和 sans-serif 作为其默认的字体栈. 使用 Bootstrap 的排版特性,您可以创建标题.段落. ...

  9. 在 Area 中使用RouteAttribute 定义路由, 并支持多语言

    业务上的一个需求, 同一页面, 两种不同的使用方法, 为了区分这两种需求, 需要加一个参数到 URL 中,不改路由的话, 是这样: http://localhost:16269/en-US/Forwa ...

  10. WINDOWS下用脚本运行redis和mongodb

    开发环境每次开麻烦,又不想建service,用bat最简单 @echo off echo 打开NOSLQ服务 start E:\nosql\mongodb\mongod.exe -dbpath e:\ ...