http://poj.org/problem?id=1236 (题目链接)

题意

  给定一个有向图,求:1.至少要选几个顶点,才能做到从这些顶点出发,可以到达全部顶点;2.至少要加多少条边,才能使得从任何一个顶点出发,都能到达全部顶点。

Solution

  先用Tarjan缩点,所以原图就变成了一个有向无环图(DAG),问题1很简单,只要找出图中入度为0的点有几个就可以了。而第2问的话,看起来就觉得好麻烦的样子,可是看了题解后发现原来如此简单。。用ans1记录入度为0的点的个数,ans2记录出度为0的点的个数,让当前点形成连通块的条件是什么呢,所有的点的入度和出度都不为0。将出度为0的点连一条边向入度为0的点,如果还有多余,那么随意向其他点连边即可,所以第二问的答案就是max(ans1,ans2)。当缩点后只有一个点的话,那么就直接输出1和0。

代码

// poj2186
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<set>
#define MOD 1000000007
#define inf 2147483640
#define LL long long
#define free(a) freopen(a".in","r",stdin);freopen(a".out","w",stdout);
using namespace std;
inline LL getint() {
LL x=0,f=1;char ch=getchar();
while (ch>'9' || ch<'0') {if (ch=='-') f=-1;ch=getchar();}
while (ch>='0' && ch<='9') {x=x*10+ch-'0';ch=getchar();}
return x*f;
} const int maxn=2000;
struct edge {int to,next;}e[maxn<<2],ee[maxn<<2];
int s[maxn],dfn[maxn],low[maxn],head[maxn],heade[maxn],f[maxn],r[maxn],c[maxn],pos[maxn],b[maxn][maxn];
int cnt,top,tot,n,ind; void insert(int u,int v) {
e[++cnt].to=v;e[cnt].next=head[u];head[u]=cnt;
}
void inserte(int u,int v) {
ee[++cnt].to=v;ee[cnt].next=heade[u];heade[u]=cnt;
}
void Tarjan(int u) {
dfn[u]=low[u]=++ind;
s[++top]=u;
f[u]=1;
for (int i=head[u];i;i=e[i].next) {
if (!dfn[e[i].to]) {
Tarjan(e[i].to);
low[u]=min(low[u],low[e[i].to]);
}
else if (f[e[i].to]) low[u]=min(low[u],dfn[e[i].to]);
}
if (low[u]==dfn[u]) {
tot++;int j;
do {
j=s[top--];
pos[j]=tot;
f[j]=0;
}while (j!=u);
}
}
int main() {
while (scanf("%d",&n)!=EOF) {
ind=0;cnt=0;top=0;
for (int i=1;i<=n;i++) pos[i]=heade[i]=head[i]=s[i]=dfn[i]=low[i]=r[i]=c[i]=0;
for (int i=1;i<=n;i++) {
int x;
while (scanf("%d",&x)!=EOF && x!=0) insert(i,x);
}
for (int i=1;i<=n;i++) if (!dfn[i]) Tarjan(i);
cnt=0;
for (int i=1;i<=n;i++)
for (int j=head[i];j;j=e[j].next)
if (!b[pos[i]][pos[e[j].to]] && pos[i]!=pos[e[j].to])
inserte(pos[i],pos[e[j].to]);
for (int i=1;i<=tot;i++)
for (int j=heade[i];j;j=ee[j].next) {
r[ee[j].to]++;
c[i]++;
}
int ans1=0,ans2=0;
for (int i=1;i<=tot;i++) if (r[i]==0) ans1++;
for (int i=1;i<=tot;i++) if (c[i]==0) ans2++;
printf("%d\n",ans1);
if (tot==1) printf("0\n");
else printf("%d\n",max(ans1,ans2));
}
return 0;
}

  

【poj1236】 Network of Schools的更多相关文章

  1. 【图论】Network of Schools

    [POJ1236]Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 18969   Acc ...

  2. 【tarjan+缩点】POJ1236[IOI1996]-Network of Schools

    [题意] 见:http://blog.csdn.net/ascii991/article/details/7466278 [思路] 缩点+tarjan,思路也可以到上面的博客去看.(吐槽:这道题其实我 ...

  3. 【IOI 1996】 Network of Schools

    [题目链接] 点击打开链接 [算法] 对于第一问,将这个图缩点,输出出度为零的点的个数 对于第二问,同样将这个图缩点,输出入度为零.出度为零的点的个数的最大值 [代码] #include <al ...

  4. POJ1236:Network of Schools (思维+Tarjan缩点)

    Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 24880   Accepted: 99 ...

  5. 【POJ 1236 Network of Schools】强联通分量问题 Tarjan算法,缩点

    题目链接:http://poj.org/problem?id=1236 题意:给定一个表示n所学校网络连通关系的有向图.现要通过网络分发软件,规则是:若顶点u,v存在通路,发给u,则v可以通过网络从u ...

  6. 【洛谷P2746】Network of Schools

    题目大意:给定一个 N 个点,M 条边的有向图,第一问求至少从多少个点出发才能遍历整个有向图,第二问求至少在这个有向图的基础上加多少条边才能使得该无向图强连通. 题解:先进行 Tarjan 缩点,得到 ...

  7. 【BZOJ】【1834】【ZJOI2010】Network 网络扩容

    网络流/费用流 这题……我一开始sb了. 第一问简单的最大流…… 第二问是要建费用流的图的……但是是在第一问的最大流跑完以后的残量网络上建,而不是重建…… 我们令残量网络上原有的弧的费用全部为0(因为 ...

  8. 【树形贪心】【UVA1267】Network

    重要意义:复习好久没写的邻接表了. Network, Seoul 2007, LA3902 Consider a tree network with n nodes where the interna ...

  9. 【OpenStack】network相关知识学习

    network 类型 local:通信不跨主机,必须同一网段,主要做单机测试使用: flat:统计可以跨主机,但是需要在同一网段: 每个 flat network 都会独占一个物理网卡 计算节点上 b ...

随机推荐

  1. Git版本控制工具(一)----git的安装及创建版本库

    ​[声明] 欢迎转载,但请保留文章原始出处→_→ 生命壹号:http://www.cnblogs.com/smyhvae/ 文章来源:http://www.cnblogs.com/smyhvae/p/ ...

  2. Unity 2D Touch Movement

    Demo试玩(Kongregate既然也有广告时间了 --!)http://www.kongregate.com/games/zhaoqingqing/2d-touch-movement 操作步骤 1 ...

  3. java 16-2 ArrayList的练习2

      需求:去除集合中自定义对象的重复值(对象的成员变量值都相同 注意: 我们按照和字符串一样的操作,发现出问题了. 为什么呢? 我们必须思考哪里会出问题? 通过简单的分析,我们知道问题出现在了判断上. ...

  4. ant 自动构建血泪史

    1.  android.bat update project -p . -t xxx 其中: xxx 为 targetid 特别注意的是:  targetid 不等于 API Level.... 2. ...

  5. jenkins忘记管理员登陆密码的补救措施

    jenkins可以作为我们日常运维过程中代码上线的发版平台,所以对jenkins的安全可靠的维护是十分重要的. 1)在登陆jenkins的时候,如果忘记普通用户的登陆密码,只要能用管理员账号登陆,还可 ...

  6. 【转】【C#】C# 不常用关键字

    1.__arglist 让我们先从__arglist开始. __arglist是用来给方法传送参数.通常我们是通过函数头部指定的参数列表给方法传递参数的.如果我们想要给方法传递一组新的参数,我们需要重 ...

  7. UWP 解压 GZIP

    准备工作: 通过 NUGET 安装 Microsoft.Bcl.Compression ; 使用命名空间 using System.IO.Compression ; public static asy ...

  8. Swift3.0 iOS获取当前时间 - 年月日时分秒星期

    Swift3.0 iOS获取当前时间 - 年月日时分秒星期func getTimes() -> [Int] { var timers: [Int] = [] // 返回的数组 let calen ...

  9. 设计传说 PS零基础精通 Photoshop CC 2015视频教程

           课程目录: 课时1 Photoshop CC 2015 全面技能培训介绍  03:08课时2 1.1 PSCC工作区域及面板自定义 08:47课时3 1.2 图像文件的多种打开方式 0 ...

  10. qt中文乱码问题

    首先,声明一下,QString 是不存在中文支持问题的,很多人遇到问题,并不是本身 QString 的问题,而是没有将自己希望的字符串正确赋给QString. 很简单的问题,"我是中文&qu ...