http://acm.hdu.edu.cn/showproblem.php?pid=2892

解题思路:

求多边形与圆的相交的面积是多少。

以圆心为顶点,将多边形划分为n个三角形。

接下来就求出每个三角形与圆相交的面积。

因为三角形的一个点是圆心,所以三角形的另外两个点与圆的情况有以下几种:

(1)两点都在圆里,三角形与圆相交的面积=三角形的面积。

(2)一个点在圆外,一个点在圆里,三角形与圆相交的面积=小三角形的面积+扇形面积

(3)两点都在圆外,又分为几种情况:

  1、两点构成的线段与圆相交的点数0或1个时,三角形与圆相交的面积=扇形的面积

  2.两点构成的线段与圆相交的点数2个时,三角形与圆相交的面积=大扇形面积+小三角形面积-小扇形的面积

 #include<cmath>
#include<cstdio>
#include<vector>
#include<algorithm>
using namespace std; #define MAXN 100000+10
#define PI acos(-1.0)
#define EPS 0.00000001 int dcmp(double x){
if(fabs(x) < EPS)
return ;
return x < ? - : ;
} struct Point{
double x, y;
Point(double x = , double y = ): x(x), y(y) {}
}; struct Circle{
Point c;
double r;
Circle(Point c = Point(, ), double r = ): c(c), r(r) {}
}; typedef Point Vector; Vector operator + (Vector A, Vector B){
return Vector(A.x + B.x, A.y + B.y);
}
Vector operator - (Point A, Point B){
return Vector(A.x - B.x, A.y - B.y);
}
Vector operator * (Vector A, double p){
return Vector(A.x * p, A.y * p);
}
Vector operator / (Vector A, double p){
return Vector(A.x / p, A.y / p);
} double dot(Vector A, Vector B){
return A.x * B.x + A.y * B.y;
} double length(Vector A){
return sqrt(dot(A, A));
} double angle(Vector A, Vector B){
return acos(dot(A, B) / length(A) / length(B));
} double cross(Vector A, Vector B){
return A.x * B.y - A.y * B.x;
} Circle bomb;//炸弹爆炸的坐标及半径
Point p[MAXN];//岛屿的点
int n;//岛屿点数 double point_line_distance(Point P, Point A, Point B){//点到直线的距离
Vector AP = P - A, AB = B - A;
return fabs(cross(AP, AB) / length(AB));
} Point point_line_projection(Point P, Point A, Point B){//点在直线上的映射
Vector v = B - A;
return A + v * (dot(v, P - A) / dot(v, v));
} int circle_line_intersect(Circle C, Point A, Point B, vector<Point> &v){
double dist = point_line_distance(C.c, A, B);
int d = dcmp(dist - C.r);
if(d > ){
return ;
}
Point pro = point_line_projection(C.c, A, B);
if(d == ){
v.push_back(pro);
return ;
}
double len = sqrt(C.r * C.r - dist * dist);//勾股定理
Vector AB = B - A;
Vector l = AB / length(AB) * len;
v.push_back(pro + l);
v.push_back(pro - l);
return ;
} bool point_on_segment(Point P, Point A, Point B){//判断点在线段上
Vector PA = A - P, PB = B - P;
return dcmp(cross(PA, PB)) == && dcmp(dot(PA, PB)) <= ;
} double circle_delta_intersect_area(Circle C, Point A, Point B){
Vector CA = A - C.c, CB = B - C.c;
double da = length(CA), db = length(CB); da = dcmp(da - C.r), db = dcmp(db - C.r); if(da <= && db <= ){//三角形在圆里面
return fabs(cross(CA, CB)) * 0.5;
} vector<Point> v;
int num = circle_line_intersect(C, A, B, v);//圆和直线的关系
double carea = C.r * C.r * PI;
Point t;
if(da <= && db > ){//左边的点在圆里 右边的点在圆外
t = point_on_segment(v[], A, B) ? v[] : v[]; double area = fabs(cross(CA, t - C.c)) * 0.5, an = angle(CB, t - C.c);
return area + carea * an / PI / ;
}
if(da > && db <= ){//左边点在圆外 右边点在圆里
t = point_on_segment(v[], A, B) ? v[] : v[]; double area = fabs(cross(CB, t - C.c)) * 0.5, an = angle(CA, t - C.c);
return area + carea * an / PI / ;
}
//两个点都在圆外
if(num == ){
double bigarea = carea * angle(CA, CB) / PI / ,
smallarea = carea * angle(v[] - C.c, v[] - C.c) / PI / ,
deltaarea = fabs(cross(v[] - C.c, v[] - C.c)) * 0.5;
return bigarea + deltaarea - smallarea;
}
return carea * angle(CA, CB) / PI / ;//两点都在圆外 直线AB与圆交点1个或两个
} double circle_polygon_intersect_area(){//源于多边形相交面积
p[n] = p[];
double ans = ;
for(int i = ; i < n; i++ ){
double area = circle_delta_intersect_area( bomb, p[i], p[i + ] );
if(cross(p[i] - bomb.c, p[i + ] - bomb.c) < ){
area = -area;
}
ans += area;
}
return ans > ? ans : -ans;
} void solve(){
scanf("%d", &n );
for(int i = ; i < n; i++ ){
scanf("%lf%lf", &p[i].x, &p[i].y );
}
printf("%.2lf\n", circle_polygon_intersect_area() );
} int main(){
//freopen("data.in", "r", stdin );
double x, y, h, x1, y1, r;
while(~scanf("%lf%lf%lf", &x, &y, &h )){
scanf("%lf%lf%lf", &x1, &y1, &r ); double t = sqrt(0.2 * h);//h = 0.5 * G * t^2 重力加速度公式 bomb = Circle( Point(x1 * t + x, y1 * t + y), r ); solve();
}
return ;
}

hdu 2892 Area的更多相关文章

  1. hdu 2892 area (圆与多边形交面积)

    Problem - 2892 这道题的做法是以圆心为原点,对多边形进行三角剖分.题目描述中,多边形的可能是顺时针或者是逆时针给出,不过在我的做法里,是用有向面积来计算的,和常见的多边形面积的求法类似, ...

  2. HDU - 2892:area (圆与多边形交 求面积)

    pro:飞行员去轰炸一个小岛,给出炸弹落地点的位置信息,以及轰炸半径:按顺时针或者逆时针给出小岛的边界点. 求被轰炸的小岛面积. sol:即是求圆和多边形的面积交. (只会套板子的我改头换面,先理解然 ...

  3. hdu 2528 Area

    2014-07-30 http://acm.hdu.edu.cn/showproblem.php?pid=2528解题思路: 求多边形被一条直线分成两部分的面积分别是多少.因为题目给的直线一定能把多边 ...

  4. hdu 4946 Area of Mushroom(凸包)

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=4946 Area of Mushroom Time Limit: 2000/1000 MS (Java/Ot ...

  5. HDU 4946 Area of Mushroom(构造凸包)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4946 题目大意:在一个平面上有n个点p1,p2,p3,p4....pn,每个点可以以v的速度在平面上移 ...

  6. HDU 4946 Area of Mushroom 凸包

    链接:pid=4946">http://acm.hdu.edu.cn/showproblem.php?pid=4946 题意:有n个人.在位置(xi,yi),速度是vi,假设对于某个点 ...

  7. HDU 4946 Area of Mushroom 凸包 第八次多校

    题目链接:hdu 4946 题意:一大神有N个学生,各个都是小神,大神有个二次元空间,每一个小神都有一个初始坐标,如今大神把这些空间分给徒弟们,规则是假设这个地方有一个人比谁都先到这,那么这个地方就是 ...

  8. hdu 2528:Area(计算几何,求线段与直线交点 + 求多边形面积)

    Area Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submis ...

  9. hdu 1451 Area in Triangle(计算几何 三角形)

    Given a triangle field and a rope of a certain length (Figure-1), you are required to use the rope t ...

随机推荐

  1. Tab指示符——Indicator

    先说说我们的思路吧. 其实思路也很简单,就是在咱们的导航下面画一个小矩形,不断的改变这个矩形距离左边的位置. 思路就这么简单,有了思路,接下来就是实现了,看代码: public class Indic ...

  2. Java中instanceof用法

    java 中的instanceof 运算符是用来在运行时指出对象是否是特定类的一个实例.instanceof通过返回一个布尔值来指出,这个对象是否是这个特定类或者是它的子类的一个实例. 用法:resu ...

  3. 【No.4 Ionic】修改 cordova 插件

    在使用 cordova 过程 使用的插件 有可能不能满足个人需求,就需要修改,下面就直接说说步骤 插件结构 我用 cordova-plugin-inappbrowser 插件 讲解 在目录中有个 sr ...

  4. iOS简单排序--字母排序、NSDictionary排序

    // 数组用系统方法compare做字母的简单排序 NSArray *oldArray = @[@"bac",@"bzd",@"azc",@ ...

  5. 15 款最好的 C/C++ 编译器和集成开发环境

    我们有很多编程语言来进行 web 开发,比如 Java,.Net,PHP,Ruby,Perl,Python 等等.今天我们主要讨论的是两大古老而又流行的语言: C 和 C++ ,它们有着许多卓越的特性 ...

  6. Linq&Lumda---LINQ to DataSet的DataTable操作

    1. DataTable读取列表 DataSet ds = new DataSet();// 省略ds的Fill代码DataTable products = ds.Tables["Produ ...

  7. LightOj 1098 - A New Function(求1-n所有数的因子和)

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1098 题意:给你一个数n (0 ≤ n ≤ 2 * 109),求n以内所有数的因子和, ...

  8. .net变量判断

    <div class="AccountLevel" style="margin-top: 15px;">                <sp ...

  9. iOS:如何将自己的SDK用CocoaPods管理

    条件:  需要在终端上将工程发布到cocoapods上,这样才能用cocoapods进行管理. 步骤: 首先,你得有一个pod的账号 在终端中输入pod 可以查看关于pod 的命令帮助,输入pod t ...

  10. Ionic学习笔记四 一些问题处理

    版权声明:本文为博主原创文章,转载请留链接,非常感谢.   目录(?)[+]   IONIC actionsheet 的cancel menu在android下不显示的bug 在 _action-sh ...