P6880-[JOI 2020 Final]オリンピックバス【最短路】
正题
题目链接:https://www.luogu.com.cn/problem/P6880
题目大意
给出\(n\)个点\(m\)条边的有向图,边有边权和一个翻转权值。
翻转至多一条边使得\(1->n->1\)往返的权值加上翻转权值最小。
\(1\leq n\leq 200,1\leq m\leq 5\times 10^4\)
解题思路
考虑到\(n\)很小可以从这个方向入手。
有时翻转会使得最短路变长,这个时候当且仅当这条边是最短路的必经边,而图上最多有\(n-1\)条必经边,所以我们如果翻转必经边时直接暴力重新计算一次最短路,否则我们就用预处理的信息来计算。
因为点很少,暴力的\(dij\)比堆优化快
时间复杂度\(O(n(n^2+m))\)
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#define ll long long
#define mp(x,y) make_pair(x,y)
using namespace std;
const ll N=210,M=5e4+10;
struct node{
ll to,next,w,v,ban;
}a[M<<1];
ll n,m,tot,ls[N],f[N],g[N],F[N],G[N],ff[N],gg[N],from[N],grom[N],ans;
bool v[N];
void addl(ll x,ll y,ll w,ll v,ll ban){
a[++tot].to=y;
a[tot].next=ls[x];
a[tot].v=v;a[tot].ban=ban;
ls[x]=tot;a[tot].w=w;
return;
}
void dij(ll *f,ll s,ll op=0){
memset(v,0,sizeof(v));f[s]=0;
for(int i=1;i<=n;i++){
int x=0;
for(int j=1;j<=n;j++)
if(!v[j])x=(f[j]<f[x])?j:x;
v[x]=1;
for(ll i=ls[x];i;i=a[i].next){
ll y=a[i].to;
if(a[i].ban)continue;
if(f[x]+a[i].w<f[y]){
f[y]=f[x]+a[i].w;
if(op==1)from[y]=i;
if(op==2)grom[y]=i;
}
}
}
return;
}
void bij(ll *f,ll s,ll op=0){
memset(v,0,sizeof(v));f[s]=0;
for(int i=1;i<=n;i++){
int x=0;
for(int j=1;j<=n;j++)
if(!v[j])x=(f[j]<f[x])?j:x;
v[x]=1;
for(ll i=ls[x];i;i=a[i].next){
ll y=a[i].to;
if(!a[i].ban)continue;
if(f[x]+a[i].w<f[y])
f[y]=f[x]+a[i].w;
}
}
return;
}
signed main()
{
scanf("%lld%lld",&n,&m);tot=1;
for(ll i=1;i<=m;i++){
ll x,y,c,d;
scanf("%lld%lld%lld%lld",&x,&y,&c,&d);
addl(x,y,c,d,0);addl(y,x,c,d,1);
}
memset(f,0x3f,sizeof(f));dij(f,1,1);
memset(g,0x3f,sizeof(g));dij(g,n,2);
memset(F,0x3f,sizeof(F));bij(F,n);
memset(G,0x3f,sizeof(G));bij(G,1);
ans=f[n]+g[1];
for(ll x=1;x<=n;x++){
for(ll i=ls[x];i;i=a[i].next){
if(a[i].ban)continue;
ll y=a[i].to,w1=f[n],w2=g[1];
if(f[x]+a[i].w+F[y]==f[n]&&i==from[y]){
a[i].ban=1;a[i^1].ban=0;
memset(ff,0x3f,sizeof(ff));dij(ff,1);
w1=ff[n];a[i].ban=0;a[i^1].ban=1;
}
else w1=min(w1,f[y]+a[i].w+F[x]);
if(g[x]+a[i].w+G[y]==g[1]&&i==grom[y]){
a[i].ban=1;a[i^1].ban=0;
memset(gg,0x3f,sizeof(gg));dij(gg,n);
w2=gg[1];a[i].ban=0;a[i^1].ban=1;
}
else w2=min(w2,g[y]+a[i].w+G[x]);
ans=min(ans,w1+w2+a[i].v);
}
}
if(ans>=2e18)puts("-1");
else printf("%lld\n",ans);
return 0;
}
P6880-[JOI 2020 Final]オリンピックバス【最短路】的更多相关文章
- JOI 2020 Final 题解
T1. 只不过是长的领带 大水题,把 \(a_i,b_i\) 从小到大排序. 发现最优方案只可能是大的 \(a_i\) 跟大的 \(b_i\) 匹配,小的 \(a_i\) 与小的 \(b_i\) 匹配 ...
- 【题解】LOJ2759. 「JOI 2014 Final」飞天鼠(最短路)
[题解]LOJ2759. 「JOI 2014 Final」飞天鼠(最短路) 考虑最终答案的构成,一定是由很多飞行+一些上升+一些下降构成. 由于在任何一个点上升或者下降代价是一样的,所以: 对于上升操 ...
- [LOJ3014][JOI 2019 Final]独特的城市——树的直径+长链剖分
题目链接: [JOI 2019 Final]独特的城市 对于每个点,它的答案最大就是与它距离最远的点的距离. 而如果与它距离为$x$的点有大于等于两个,那么与它距离小于等于$x$的点都不会被计入答案. ...
- JOI 2018 Final 题解
题目列表:https://loj.ac/problems/search?keyword=JOI+2018+Final T1 寒冬暖炉 贪心 暴力考虑每相邻两个人之间的间隔,从小到大选取即可 #incl ...
- LOJ#2351. 「JOI 2018 Final」毒蛇越狱
LOJ#2351. 「JOI 2018 Final」毒蛇越狱 https://loj.ac/problem/2351 分析: 首先有\(2^{|?|}\)的暴力非常好做. 观察到\(min(|1|,| ...
- 「JOI 2017 Final」JOIOI 王国
「JOI 2017 Final」JOIOI 王国 题目描述 题目译自 JOI 2017 Final T3「 JOIOI 王国 / The Kingdom of JOIOI」 JOIOI 王国是一个 H ...
- JOI 2019 Final合集
JOI 2019 Final 合集 #3010. 「JOI 2019 Final」勇者比太郎 其实如果读懂题了就是水题了 题目就是让你求满足条件的\(JOI\),使得\(O\)在\(J\)同行的 ...
- 【LOJ】#3014. 「JOI 2019 Final」独特的城市(长链剖分)
LOJ#3014. 「JOI 2019 Final」独特的城市(长链剖分) 显然我们画一条直径,容易发现被统计的只可能是直径某个距离较远的端点到这个点的路径上的值 用一个栈统计可以被统计的点,然后我们 ...
- 「JOI 2014 Final」飞天鼠
「JOI 2014 Final」飞天鼠 显然向上爬是没有必要的,除非会下降到地面以下,才提高到刚好为0. 到达一个点有两种情况:到达高度为0和不为0. 对于高度不为0的情况,显然花费的时间越少高度越高 ...
- 「JOI 2015 Final」城墙
「JOI 2015 Final」城墙 复杂度默认\(m=n\) 暴力 对于点\((i,j)\),记录\(ld[i][j]=min(向下延伸的长度,向右延伸的长度)\),\(rd[i][j]=min(向 ...
随机推荐
- npm : 无法加载文件 C:\Program Files\nodejs\node_global\npm.ps1,因为在此系统上禁止运行脚本。
- 六:使用Cookie进行会话管理
1.存储客户端的状态 因为Http协议是无状态的,也就是说每个客户访问服务器端资源时,服务器并不知道该客户端是谁,所以需要会话技术识别客户端的状态.会话技术是帮助服务器 记住客户端状态 2.会话技术 ...
- GROUP BY 语句用于结合合计函数,根据一个或多个列对结果集进行分组
1 drop table orders; 2 create table orders ( 3 o_id int auto_increment primary key, 4 orderdate date ...
- Kafka源码篇 --- 小白也能看懂的Producer的初始化及元数据获取流程
最近在研究kafka的源码,发现有些小伙伴的源码写的很不错,就想转载一下,让更多的人知道和学习一下. https://blog.csdn.net/weixin_43167418/article/det ...
- IO流学习笔记(一)之FileWriter与FileReader
IO流用来处理设备之间的数据传输 Java对数据的操作是通过流的方式 Java用于操作流的对象都在IO包中 流按照操作数据分为两种:字节流和字符流 流按流向分为:输入流和输出流 输入流和输出流是相对于 ...
- TOMCAT WEB请求乱码
post乱码: 原因: 对于POST方式,它采用的编码是由页面来决定的即ContentType("text/html; charset=GBK").当通过点击页面的submit ...
- WEB漏洞——RCE
RCE(remote command/code execute)远程命令/代码执行漏洞,可以让攻击者直接向后台服务器远程注入操作系统命令或者代码,从而控制后台系统. RCE漏洞 应用程序有时需要调用一 ...
- Robot Framework(14)- Variables 表的详细使用和具体例子
如果你还想从头学起Robot Framework,可以看看这个系列的文章哦! https://www.cnblogs.com/poloyy/category/1770899.html Variable ...
- MapperScannerConfigurer之sqlSessionFactoryBeanName注入方式
Spring整合Mybatis时,项目启动时报错:(MapperScannerConfigurer之sqlSessionFactoryBeanName注入方式) pringframework.bean ...
- Hive的分桶表
[分桶概述] Hive表分区的实质是分目录(将超大表的数据按指定标准细分到指定目录),且分区的字段不属于Hive表中存在的字段:分桶的实质是分文件(将超大文件的数据按指定标准细分到分桶文件),且分桶的 ...