P5591-小猪佩奇学数学【单位根反演】
正题
题目链接:https://www.luogu.com.cn/problem/P5591
题目大意
给出\(n,p,k\)求
\]
\(1\leq n,p<998244353,k=2^w(w\in[0,20])\)
解题思路
开始以为推错了,结果是要特判
推出了看上去不是我能推的式子
\]
然后单位根反演
\]
系统整理一下
\]
然后等比数列通项公式拆开
\]
\]
\]
然后写出来会愉快的发现没有过样例,仔细看我们式子里面有一个\(\frac{\omega_k^l}{1-\omega_k^l}\)。
当 \(l=0\) 的时候\(1-\omega_k^l=0\),所以不能直接这么求,我们这个得分开考虑。
就是
\]
\]
就好了
时间复杂度\(:O(k\log P)\)
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const ll P=998244353;
ll n,p,k,ans;
ll power(ll x,ll b){
ll ans=1;x%=P;
while(b){
if(b&1)ans=ans*x%P;
x=x*x%P;b>>=1;
}
return ans;
}
signed main()
{
scanf("%lld%lld%lld",&n,&p,&k);
ll d=power(3,(P-1)/k);
ans=n*p%P*power(p+1,n-1)%P;
for(ll i=1,w=d;i<k;i++,w=w*d%P){
ll inv=power(P+1-w,P-2)*w%P;
ans+=power(p+1,n)*inv%P;
ans-=power(w*p+1,n)*inv%P;
ans=(ans+P)%P;
}
printf("%lld\n",ans*power(k,P-2)%P);
return 0;
}
P5591-小猪佩奇学数学【单位根反演】的更多相关文章
- P5591 小猪佩奇学数学
P5591 小猪佩奇学数学 知识点 二项式定理 \[(x+1)^n=\sum_{i=0}^n\binom nix^i \] 单位根反演 \[[n\mid k]=\frac 1n\sum_{i=0}^{ ...
- Luogu5591 小猪佩奇学数学 【单位根反演】
题目链接:洛谷 \[ Ans=\frac{1}{k}(\sum_{i=0}^n\binom{n}{i}p^ii-\sum_{i=0}^n\binom{n}{i}p^i(i \ \mathrm{mod} ...
- loj 6485 LJJ学二项式定理 —— 单位根反演
题目:https://loj.ac/problem/6485 先把 \( a_{i mod 4} \) 处理掉,其实就是 \( \sum\limits_{i=0}^{3} a_{i} \sum\lim ...
- [LOJ 6485]LJJ学二项式定理(单位根反演)
也许更好的阅读体验 \(\mathcal{Description}\) 原题链接 \(T\)组询问,每次给\(n,s,a_0,a_1,a_2,a_3\)求 \(\begin{aligned}\left ...
- LOJ 6485 LJJ 学二项式定理——单位根反演
题目:https://loj.ac/problem/6485 \( \sum\limits_{k=0}^{3}\sum\limits_{i=0}^{n}C_{n}^{i}s^{i}a_{k}[4|(i ...
- loj #6485. LJJ 学二项式定理 单位根反演
新学的黑科技,感觉好nb ~ #include <bits/stdc++.h> #define ll long long #define setIO(s) freopen(s". ...
- 数学杂烩总结(多项式/形式幂级数+FWT+特征多项式+生成函数+斯特林数+二次剩余+单位根反演+置换群)
数学杂烩总结(多项式/形式幂级数+FWT+特征多项式+生成函数+斯特林数+二次剩余+单位根反演+置换群) 因为不会做目录所以请善用ctrl+F 本来想的是笔记之类的,写着写着就变成了资源整理 一些有的 ...
- 【LOJ#6485】LJJ 学二项式定理(单位根反演)
[LOJ#6485]LJJ 学二项式定理(单位根反演) 题面 LOJ 题解 显然对于\(a0,a1,a2,a3\)分开算答案. 这里以\(a0\)为例 \[\begin{aligned} Ans&am ...
- loj#6485. LJJ 学二项式定理(单位根反演)
题面 传送门 题解 首先你要知道一个叫做单位根反演的东西 \[{1\over k}\sum_{i=0}^{k-1}\omega^{in}_k=[k|n]\] 直接用等比数列求和就可以证明了 而且在模\ ...
随机推荐
- input 限制 上传文件类型
参考:input file控件限制上传文件类型 HTML <input> 标签的 accept 属性 网页上添加一个input file HTML控件: <input id=&quo ...
- CompletionService简介、原理以及小案例
博客1:http://www.oschina.net/question/12_11255 博客2: CompletionService简介 CompletionService与ExecutorServ ...
- Vue状态管理模式---Vuex
1. Vuex是做什么的? 官方解释: Vuex 是一个专为Vue.js 应用程序开发的 状态管理模式 它采用 集中式存储管理 应用的所有组件的状态, 并以相应的规则保证状态以一种可预测的方式发生变化 ...
- sparksql解析流程
1.sparkSql处理核心:Catalyst工作流程(本质:把sql.dataframe相结合,以树tree的形式来存储.优化) 2.catalyst工作流程 1)Parser(解析器):SqlPa ...
- node十年心酸史,带你了解大前端的由来!
前言 近年来,随着前端的丰富,前后端分离是趋势.各种东西如雨后春笋一般,层出不穷.node.js的出现,使前端真正意义上变成了大前端. 前端由来之HTML发展史 1990 年,Tim Berners- ...
- T-SQL - query01_创建数据库|创建表|添加数据|简单查询
时间:2017-09-29 整理:byzqy 本篇以"梁山好汉花名册"为例,记录MS SQLServer T-SQL语句的使用,包含命令: 创建数据库 | 删除数据库 创建表 | ...
- 用C++实现的Eratosthenes筛法程序
运行示例 只输出素数总数的运行示例 PS H:\Read\num\x64\Release> .\esieve.exe Eratosthenes sieve: a method to find o ...
- golang context包
go context标准库 context包在Go1.7版本时加入到标准库中.其设计目标是给Golang提供一个标准接口来给其他任务发送取消信号和传递数据.其具体作用为: 可以通过context发送取 ...
- shell中的引号
单引号: 所见即所得 原封不动输出 双引号: 与单引号类似 特殊符号进行解析 ( $ $() `` ! ) 无引号: 与双引号类似 支持通配符( {} * ) 反引号: 优先执行 优先执行里面的命令, ...
- TDSQL(MySQL版)之DB组件升级
随着数据库产品的更新迭代,修复bug等等,产品避免不了会出现升级的需求.TDSQL(MysqL版)也会有这方面的需求.接下来我就说说如何对现有TDSQL(MySQL版)集群组件进行升级,而不影响业务. ...