\(\mathcal{Description}\)

  Link.

  平面上有 \(n\) 个互不重合的点 \((x_{1..n},y_{1..n})\),求其两两曼哈顿距离的前 \(m\) 小值。

  \(n,m\le2.5\times10^5\)。

\(\mathcal{Solution}\)

  会做,但不完全会做。

  数前 \(k\) 小的一种技术是:将解大致分类,在每类中维护最优解,一起放入堆中迭代。

  应用到本题,按 \((x,y)\) 的二维偏序排序后,对于每个点,尝试维护其前方的所有点与它构成的答案信息。具体地,对于当前 \((x,y)\),维护了 \((x',y')\) 与它的曼哈顿距离,必然有 \(x'\le x\),所以仅需考虑 \(y\) 与 \(y'\) 的关系,分别取正负号,用可持久化线段树维护一发即可。

  复杂度 \(\mathcal O((n+m)\log n)\),空间同阶。

\(\mathcal{Code}\)

/* Clearink */

#include <queue>
#include <cstdio>
#include <vector>
#include <cassert>
#include <iostream>
#include <algorithm> #define rep( i, l, r ) for ( int i = l, rep##i = r; i <= rep##i; ++i )
#define per( i, r, l ) for ( int i = r, per##i = l; i >= per##i; --i ) typedef long long LL;
#define int LL
typedef std::pair<int, int> PII;
typedef std::pair<LL, int> PLI;
#define fi first
#define se second inline int rint() {
int x = 0, f = 1, s = getchar();
for ( ; s < '0' || '9' < s; s = getchar() ) f = s == '-' ? -f : f;
for ( ; '0' <= s && s <= '9'; s = getchar() ) x = x * 10 + ( s ^ '0' );
return x * f;
} template<typename Tp>
inline void wint( Tp x ) {
if ( x < 0 ) putchar( '-' ), x = -x;
if ( 9 < x ) wint( x / 10 );
putchar( x % 10 ^ '0' );
} inline int iabs( const int a ) { return a < 0 ? -a : a; } const int MAXN = 2.5e5;
const LL IINF = 1ll << 60;
int n, m, mx, dy[MAXN + 5], root[MAXN + 5];
PII pt[MAXN + 5];
std::vector<int> ybuc[MAXN + 5];
std::priority_queue<PLI, std::vector<PLI>, std::greater<PLI> > heap; struct SegmentTree {
static const int MAXND = 1e7;
int node, ch[MAXND][2];
PII amn[MAXND], smn[MAXND]; SegmentTree() { amn[0] = smn[0] = { IINF, 0 }; } inline void copy( const int u, const int v ) {
ch[u][0] = ch[v][0], ch[u][1] = ch[v][1],
amn[u] = amn[v], smn[u] = smn[v];
} inline void pushup( const int u ) {
amn[u] = std::min( amn[ch[u][0]], amn[ch[u][1]] );
smn[u] = std::min( smn[ch[u][0]], smn[ch[u][1]] );
} inline void modify( int& u, const int l, const int r,
const int x, const int y ) {
int v = u, mid = l + r >> 1; copy( u = ++node, v );
if ( l == r ) {
if ( x == IINF ) u = 0;
else amn[u] = { -x + dy[y], l }, smn[u] = { -x - dy[y], l };
return ;
}
if ( y <= mid ) modify( ch[u][0], l, mid, x, y );
else modify( ch[u][1], mid + 1, r, x, y );
pushup( u );
} inline PII query( const int u, const int l, const int r,
const int ql, const int qr, const bool type ) const {
if ( !u ) return { IINF, 0 };
if ( ql <= l && r <= qr ) return type ? amn[u] : smn[u];
int mid = l + r >> 1; PII ret( IINF, 0 );
if ( ql <= mid ) {
ret = std::min( ret, query( ch[u][0], l, mid, ql, qr, type ) );
}
if ( mid < qr ) {
ret = std::min( ret, query( ch[u][1], mid + 1, r, ql, qr, type ) );
}
return ret;
} inline PLI calc( const int rt, const int x, const int y ) {
PII up( query( rt, 1, mx, y, mx, true ) ),
dn( query( rt, 1, mx, 1, y, false ) );
LL u = 0ll + x - dy[y] + up.fi, d = 0ll + x + dy[y] + dn.fi;
if ( u <= d ) return PLI( u, up.se );
else return PLI( d, dn.se );
}
} sgt; signed main() {
n = rint(), m = rint();
rep ( i, 1, n ) pt[i].fi = rint(), dy[i] = pt[i].se = rint(); std::sort( pt + 1, pt + n + 1 );
std::sort( dy + 1, dy + n + 1 );
mx = std::unique( dy + 1, dy + n + 1 ) - dy - 1;
rep ( i, 1, n ) {
pt[i].se = std::lower_bound( dy + 1, dy + mx + 1, pt[i].se ) - dy;
ybuc[pt[i].se].push_back( pt[i].fi );
} rep ( i, 1, mx ) std::sort( ybuc[i].begin(), ybuc[i].end() ); rep ( i, 2, n ) {
root[i] = root[i - 1];
sgt.modify( root[i], 1, mx, pt[i - 1].fi, pt[i - 1].se );
heap.push( { sgt.calc( root[i], pt[i].fi, pt[i].se ).fi, i } );
} while ( m-- ) {
PLI p( heap.top() ); heap.pop();
wint( p.fi ), putchar( '\n' ); int yv( sgt.calc( root[p.se], pt[p.se].fi, pt[p.se].se ).se );
int x = 0ll + iabs( dy[pt[p.se].se] - dy[yv] ) + pt[p.se].fi - p.fi;
int id = std::lower_bound( ybuc[yv].begin(), ybuc[yv].end(), x )
- ybuc[yv].begin(), nx = id ? ybuc[yv][id - 1] : IINF; sgt.modify( root[p.se], 1, mx, nx, yv );
heap.push( { sgt.calc( root[p.se], pt[p.se].fi, pt[p.se].se ).fi,
p.se } );
}
return 0;
}

Solution -「JOISC 2021」「LOJ #3491」道路建设的更多相关文章

  1. Solution -「JOISC 2021」「LOJ #3489」饮食区

    \(\mathcal{Description}\)   Link.   呐--不想概括题意,自己去读叭~ \(\mathcal{Solution}\)   如果仅有 1. 3. 操作,能不能做?    ...

  2. Solution -「JOISC 2021」「LOJ #3495」聚会 2

    \(\mathcal{Description}\)   Link.   给定一棵含 \(n\) 个结点的树.称点集 \(S\) 到结点 \(u\) 的会合距离为 \(\sum_{v\in S}\ope ...

  3. Solution -「JOISC 2021」古老的机器

    \(\mathcal{Description}\)   Link.   这是一道通信题.   对于长度为一个 \(n\),仅包含字符 X, Y, Z 的字符串 \(s\),将其中 \(n\) 个字符按 ...

  4. Loj #2731 「JOISC 2016 Day 1」棋盘游戏

    Loj 2731 「JOISC 2016 Day 1」棋盘游戏 JOI 君有一个棋盘,棋盘上有 \(N\) 行 \(3\) 列 的格子.JOI 君有若干棋子,并想用它们来玩一个游戏.初始状态棋盘上至少 ...

  5. 【LOJ】#3036. 「JOISC 2019 Day3」指定城市

    LOJ#3036. 「JOISC 2019 Day3」指定城市 一个点的可以dp出来 两个点也可以dp出来 后面的就是在两个点的情况下选一条最长的链加进去,用线段树维护即可 #include < ...

  6. 【LOJ】#3034. 「JOISC 2019 Day2」两道料理

    LOJ#3034. 「JOISC 2019 Day2」两道料理 找出最大的\(y_{i}\)使得\(sumA_{i} + sumB_{y_i} \leq S_{i}\) 和最大的\(x_{j}\)使得 ...

  7. 【LOJ】#3032. 「JOISC 2019 Day1」馕

    LOJ#3032. 「JOISC 2019 Day1」馕 处理出每个人把馕切成N段,每一段快乐度相同,我们选择第一个排在最前的人分给他的第一段,然后再在未选取的的人中选一个第二个排在最前的切一下,并把 ...

  8. 【LOJ】#3033. 「JOISC 2019 Day2」两个天线

    LOJ#3033. 「JOISC 2019 Day2」两个天线 用后面的天线更新前面的天线,线段树上存历史版本的最大值 也就是线段树需要维护历史版本的最大值,后面的天线的标记中最大的那个和最小的那个, ...

  9. 【LOJ】#3031. 「JOISC 2019 Day1」聚会

    LOJ#3031. 「JOISC 2019 Day1」聚会 听说随机可过? 我想了很久想了一个不会被卡的做法,建出前\(u - 1\)个点的虚树,然后找第\(u\)个点的插入位置,就是每次找一条最长链 ...

随机推荐

  1. js 使用 substr 和substring 的区别记录

    根据 提示,已经很清楚区别了 区别都是第二个参数 ,substr 是长度 ,而substring 仍是索引数

  2. POJCrossing River

    http://poj.org/problem?id=1700贪心问题 对于一个安排,怎么样是最小的?首先关于花费,对于每次运输,以最节约的方式运输.两种情况,一种最轻的作为往返,另外 一种是每次带一个 ...

  3. 读《疯狂Java讲义》笔记总结一

    最近在读<疯狂Java讲义>,现把其中遇到的一些自己以前没掌握的点儿记录下来. 1.字符串相关 字符串不是基本类型,字符串是一个类,也就是一个引用类型. 字符串转int类型String a ...

  4. 学习javaScript必知必会(3)~数组(数组创建,for...in遍历,辅助函数,高级函数filter、map、reduce)

    一.数组: 1.js是弱语言,js中的数组定义时:不用指定数据类型.不用功指定数组长度:数组可以存储任何数据类型的数据 2.数组定义的[ ] 的实质: [] = new Array(); {} = n ...

  5. elasticsearch拼写纠错之Term Suggester

    一.什么是拼写纠错 拼写纠错就是搜索引擎可以智能的感知用户输入关键字的错误,并使用纠正过的关键字进行搜索展示给用户:拼写纠错是一种改善用户体验的功能: elasticsearch提供了以下不同类型的s ...

  6. 【记录一个问题】cuda核函数可能存在栈溢出,导致main()函数退出后程序卡死30秒CUDA

    调试一个CUDA核函数过程中发现一个奇怪的问题:调用某个核函数,程序耗时33秒,并且主要时间是main()函数结束后的33秒:而注释掉此核函数,程序执行不到1秒. 由此可见,可能是某种栈溢出,导致了程 ...

  7. visual studio进行机器学习与python编写

    visual studio里的python安装之后自带一个虚拟环境 1.anaconda有些包版本无法到最新. 2.包管理器在安装卸载,强制停止后,包管理器会出问题,一直卸不掉那个包. 在卸载pyth ...

  8. 通过location.search来获取页面传来的参数

    获取页面传来的参数 <div> <script> function GetQueryString(name) { var reg = new RegExp("(^|& ...

  9. Android Studio如何查看自己设计的数据库

    首先点击左上角进入Device File Explorer 进入后 点击data-data 找到你的项目名称 进入后点击你建立的数据库 一步步按照提示进行操作,即可显示你的表

  10. django 验证和授权

    User模型 一. User模型简介 1. 是验证和授权框架的核心模型,完整路径为:django.contrib.auth.models.User 2. 模型中拥有的字段: 1. username:用 ...