数据仓库分层中的ODS、DWD、DWS
1.数据仓库DW
1.1简介
Data warehouse(可简写为DW或者DWH)数据仓库,是在数据库已经大量存在的情况下,为了进一步挖掘数据资源、为了决策需要而产生的,它是一整套包括了etl、调度、建模在内的完整的理论体系。数据仓库的方案建设的目的,是为前端查询和分析作为基础,主要应用于OLAP(on-line Analytical Processing),支持复杂的分析操作,侧重决策支持,听且提供直观易懂的查询结果。比较流行的有:AWS Redshift,Greenplum,Hive等。
1.2主要特点
- 面向主题:
- 操作型数据库组织面向事务处理任务,而数据仓库中的数据是按照一定的主题域进行组织。
- 主题是指用户使用数据仓库进行决策时所关心的重点方面,一个主题通过与多个操作型信息系统相关。
- 集成
- 需要对源数据进行加工与融合,统一与综合
- 在加工的过程中必须消除源数据的不一致性,以保证数据仓库内的信息时关于整个企业的一致的全局信息。(关联关系)
- 不可修改
- DW中的数据并不是最新的,而是来源于其他数据源
- 数据仓库主要是为决策分析提供数据,涉及的操作主要是数据的查询
- 与时间相关
- 处于决策的需要数据仓库中的数据都需要标明时间属性
1.3与数据库的对比
- DW:专门为数据分析设计的,涉及读取大量数据以了解数据之间的关系和趋势
- 数据库:用于捕获和存储数据
特性 | 数据仓库 | 事务数据库 |
---|---|---|
适合的工作负载 | 分析、报告、大数据 | 事务处理 |
数据源 | 从多个来源收集和标准化的数据 | 从单个来源(例如事务系统)捕获的数据 |
数据捕获 | 批量写入操作通过按照预定的批处理计划执行 | 针对连续写入操作进行了优化,因为新数据能够最大程度地提高事务吞吐量 |
数据标准化 | 非标准化schema,例如星型Schema或雪花型schema | 高度标准化的静态schema |
数据存储 | 使用列式存储进行了优化,可实现轻松访问和高速查询性能 | 针对在单行型物理块中执行高吞吐量写入操作进行了优化 |
数据访问 | 为最小化I/O并最大化数据吞吐量进行了优化 | 大量小型读取操作 |
2.数据分层
数据分层,每个企业根据自己的业务需求可以分成不同的层次,但是最基础的分层思想,理论上数据分为三个层:数据运营层、数据仓库层、数据服务层。基于这个基础分层之上,再提交信息的层次,来满足不同的业务需求。
2.1数据运营层(ODS)
- ODS:Operation Data Store 数据准备区,也称为贴源层。数据仓库源头系统的数据表通常会原封不动的存储一份,这称为ODS层,是后续数据仓库加工数据的来源。
- ODS层数据的来源方式:
- 业务库
- 经常会使用sqoop来抽取,例如每天定时抽取一次。
- 实时方面,可以考虑用canal监听mysql的binlog,实时接入即可。
- 埋点日志
- 日志一般以文件的形式保存,可以选择用flume定时同步
- 可以用spark streaming或者Flink来实时接入
- kafka也OK
- 消息队列:即来自ActiveMQ、Kafka的数据等。
- 业务库
2.2数据仓库层(DW)
DW数据分层,由下到上为DWD,DWB,DWS。
- DWD:data warehouse details 细节数据层,是业务层与数据仓库的隔离层。主要对ODS数据层做一些数据清洗和规范化的操作。
- 数据清洗:去除空值、脏数据、超过极限范围的
- DWB:data warehouse base 数据基础层,存储的是客观数据,一般用作中间层,可以认为是大量指标的数据层。
- DWS:data warehouse service 数据服务层,基于DWB上的基础数据,整合汇总成分析某一个主题域的服务数据层,一般是宽表。用于提供后续的业务查询,OLAP分析,数据分发等。
- 用户行为,轻度聚合
- 主要对ODS/DWD层数据做一些轻度的汇总。
2.3数据服务层/应用层(ADS)
- ADS:applicationData Service应用数据服务,该层主要是提供数据产品和数据分析使用的数据,一般会存储在ES、mysql等系统中供线上系统使用。
- 我们通过说的报表数据,或者说那种大宽表,一般就放在这里
3.附录
ETL
- ETL :Extract-Transform-Load,用于描述将数据从来源端经过抽取、转换、加载到目的端的过程。
宽表
- 含义:指字段比较多的数据库表。通常是指业务主体相关的指标、纬度、属性关联在一起的一张数据库表。
- 特点:
- 宽表由于把不同的内容都放在同一张表,宽表已经不符合三范式的模型设计规范:
- 坏处:数据有大量冗余
- 好处:查询性能的提高和便捷
- 宽表的设计广泛应用于数据挖掘模型训练前的数据准备,通过把相关字段放在同一张表中,可以大大提供数据挖掘模型训练过程中迭代计算的消息问题。
- 宽表由于把不同的内容都放在同一张表,宽表已经不符合三范式的模型设计规范:
数据库设计三范式
为了建立冗余较小、结构合理的数据库,设计数据库时必须遵循一定的规则。在关系型数据库中这种规则就称为范式。范式时符合某一种设计要求的总结。
- 第一范式:确保每列保持原子性,即要求数据库表中的所有字段值都是不可分解的原子值。
- 第二范式:确保表中的每列都和主键相关。也就是说在一个数据库表中,一个表中只能保存一种数据,不可以把多种数据保存在同一张数据库表中。
- 作用:减少了数据库的冗余
- 第三范式:确保每列都和主键列直接相关,而不是间接相关。
数据仓库分层中的ODS、DWD、DWS的更多相关文章
- 数据仓库和数据集市:ODS、DW、DWD、DWM、DWS、ADS
@ 目录 数据流向 何为数仓DW 主要特点 与数据库的对比 为何要分层 数据分层 数据运营层ODS 数据仓库层 数据细节层DWD 数据中间层DWM 数据服务层DWS(DWT) 数据应用层ADS 事实表 ...
- 数仓1.1 分层| ODS& DWD层
数仓分层 ODS:Operation Data Store原始数据 DWD(数据清洗/DWI) data warehouse detail数据明细详情,去除空值,脏数据,超过极限范围的明细解析具体表 ...
- 数据仓库分层ODS DW DM 主题 标签
数据仓库知识之ODS/DW/DM - xingchaojun的专栏 - CSDN博客 数据仓库为什么要分层 - 晨柳溪 - 博客园 数据仓库的架构与设计 - Trigl的博客 - CSDN博客 数据仓 ...
- 大数据系列之数据仓库Hive中分区Partition如何使用
Hive系列博文,持续更新~~~ 大数据系列之数据仓库Hive原理 大数据系列之数据仓库Hive安装 大数据系列之数据仓库Hive中分区Partition如何使用 大数据系列之数据仓库Hive命令使用 ...
- Flume在企业大数据仓库架构中位置及功能
Flume在企业大数据仓库架构中位置及功能 hadoop 数据仓库 flume 数据仓库架构 1.如下图所示,外部数据中,关系型数据库导入到HDFS用sqoop,由Nginx产生的文件实时监控用Flu ...
- 高速查询hive数据仓库表中的总条数
Author: kwu 高速查询hive数据仓库中的条数.在查询hive表的条数,通常使用count(*).可是数据量大的时候,mr跑count(*)往往须要几分钟的时间. 1.传统方式获得总条数例如 ...
- UI分层中使用PageFactory
基于原PO设计模式,需要改变原有的从文件中读取文件,更改为PageFactory模式.做出如下改动: 1 2 public MsysPage(DriverBase driver) { super(dr ...
- RIP OSPF 等路由协议属于计算机网络分层中的哪一层
RIP基于UDP,BGP基于TCP,OSPF EGP基于IP 在TCP/IP协议栈中定义的路由协议用于发现和维护前往目的地的最短路径.可以认为它们不属于网络层协议(注意,是用based on,而不是实 ...
- 【漫谈数据仓库】 如何优雅地设计数据分层 ODS DW DM层级
转载http://bigdata.51cto.com/art/201710/554810.htm 一.文章主题 本文主要讲解数据仓库的一个重要环节:如何设计数据分层!其它关于数据仓库的内容可参考之前的 ...
随机推荐
- PyCharm永久破解方法,2021最新版本!!!
1,下载破解补丁(已更新到2021.1版本): 关注微信公众号<程序员的时光>,回复破解补丁即可: 下载补丁文件 jetbrains-agent.jar 和importat.txt文件并将 ...
- 学了ES6,还不会Promise的链式调用?🧐
前言 本文主要讲解promise的链式调用的方法及其最终方案 应用场景 假如开发有个需求是先要请求到第一个数据,然后根据第一个数据再去请求第二个数据,再根据第二个数据去请求第三个数据...一直到最后得 ...
- BPMN 學習實例
什麼是業務流程圖? What is BPMN 業務流程建模符號(BPMN)是業務流程建模的一種方法.它基於統一建模語言(UML)中活動圖的概念,以圖形符號(業務流程圖)支持業務流程的規範.BPMN為企 ...
- 从浏览器发送请求给SpringBoot后端时,是如何准确找到哪个接口的?(下篇)
纸上得来终觉浅,绝知此事要躬行 注意: 本文 SpringBoot 版本为 2.5.2; JDK 版本 为 jdk 11. 前言: 前文:你了解SpringBoot启动时API相关信息是用什么数据结构 ...
- Uniapp云打包生成apk下载链接
使用uni[]()app云打包生成安装包下载链接 manifest.json 中配置自动获取appid manifest.json中配置app 图标 按教程生成.keystore证书 使用云打包生成安 ...
- the Agiles Scrum Meeting 10
会议时间:2020.4.18 20:00 1.每个人的工作 今天已完成的工作 个人结对项目增量开发组:完成自动创建仓库功能 issues:增量组:准备评测机制,增加仓库自动创建和管理 团队项目增量开发 ...
- 查找最小生成树:普里姆算法算法(Prim)算法
一.算法介绍 普里姆算法(Prim's algorithm),图论中的一种算法,可在加权连通图里搜索最小生成树.意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点,且其所有边的权值之 ...
- 基于屏幕空间的实时全局光照(Real-time Global Illumination Based On Screen Space)
目录 Reflective Shadow Maps(RSM) RSM 的重要性采样 RSM 的应用与缺陷 Screen Space Ambient Occulsion(SSAO) SSAO Blur ...
- Shadertoy 教程 Part 4 - 绘制多个2D图形和混入
Note: This series blog was translated from Nathan Vaughn's Shaders Language Tutorial and has been au ...
- IM服务器:开发一个高并发的IM服务器难在哪
IM服务器要实现的最基本功能就是消息的转发.--好像是一句废话! 这就意味着IM服务器要为每个登录用户创建一个与该用户信息相关的内存上下文,为方便描述我们在这里称之为:user_context.use ...