SLAM的数学基础(1):什么是方差,有什么意义?
小红班上有两组同学的数学考试分数为:
第一组:小红:100分,小明:60分,小宇:20分
第二组:小蓝:70分,小华:60分,小杰:50分
那么很容易算出,第一组的平均分是60分,第二组的平均分也是60分。
这下可好,小红的100分被小宇拉了后腿。这时候,该引入一种方法,来表现这个问题。好让老师知道哪些小组的成绩差距比较大。
方差能比较好的表达一组数据离散的程度,方差大,这组数据分散的就比较大;方差小,这组数据分散的就比较小。
方差(variance)的表达公式为:
照这个公式计算,第一组的方差为:
第二组的方差为:
可以看出,第一组的方差远大于第二组。
下面用C语言实现
#include <stdio.h> float calc_variance(float samples[], int count)
{
float sum_of_samples = 0;
float average = 0;
float variance = 0; for(int i = 0; i < count; i++)
{
sum_of_samples += samples[i];
} average = sum_of_samples / count; for(int i = 0; i < count; i++)
{
float temp = samples[i] - average;
variance += (temp * temp);
} variance /= count; return variance;
} int main()
{
float team1[] = {100, 60, 20};
float team2[] = {70, 60, 50}; printf("variance of team 1 is %f\n", calc_variance(team1, 3));
printf("variance of team 2 is %f\n", calc_variance(team2, 3)); return 0;
}
运行结果为:
variance of team 1 is 1066.666626
variance of team 2 is 66.666664
SLAM的数学基础(1):什么是方差,有什么意义?的更多相关文章
- 视觉SLAM的数学基础 第一篇 3D空间的位置表示
视觉SLAM中的数学基础 第一篇 3D空间的位置表示 前言 转眼间一个学期又将过去,距离我上次写<一起做RGBD SLAM>已经半年之久.<一起做>系列反响很不错,主要由于它为 ...
- SLAM的数学基础(2):协方差和协方差矩阵
之前我们知道,方差是一组数据的离散程度,它的公式为: 那么如果我们有几组数据,需要知道这几组数据的协同性呢? 举个例子,还是在小红,几次考试成绩如下: 入学考试:数学:80,语文:80 期中考试:数学 ...
- SLAM的数学基础(4):先验概率、后验概率、贝叶斯准则
假设有事件A和事件B,可以同时发生但不是完全同时发生,如以下韦恩图所示: 其中,A∩B表示A和B的并集,即A和B同时发生的概率. 如此,我们很容易得出,在事件B发生的情况下,事件A发生的概率为: 这个 ...
- SLAM的数学基础(3):几种常见的概率分布的实现及验证。
分布,在计算机学科里一般是指概率分布,是概率论的基本概念之一.分布反映的是随机或某个系统中的某个变量,它的取值的范围和规律. 常见的分布有:二项分布.泊松分布.正态分布.指数分布等,下面对它们进行一一 ...
- 网易blog服务器关闭了,我曾经的大部分博文迁移至此,留作纪念。欢迎大家去我的简书blog~
ARM时代过去了,另一个AI时代正在上演~ 这一次我看上了计算机视觉,一个依旧在发展,论文数量不断上升的技术领域,还有很多待研究的技术突破点,我可以玩的时间长一点了. 活到老,学到了.学以致用乐趣无穷 ...
- 清明 DAY 1
数学基础 Part 1. 高精度计算 Part 2. 模意义下的运算 mod 对一个数取模,其实就是取余数 注意: • 无除法运算 • ...
- 吴恩达《深度学习》第二门课(3)超参数调试、Batch正则化和程序框架
3.1调试处理 (1)不同超参数调试的优先级是不一样的,如下图中的一些超参数,首先最重要的应该是学习率α(红色圈出),然后是Momentum算法的β.隐藏层单元数.mini-batch size(黄色 ...
- #np.random.normal,产生制定分布的数集(默认是标准正态分布)
http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.normal.html #np.random.normal,产生制定分 ...
- Coursera Deep Learning笔记 改善深层神经网络:超参数调试 Batch归一化 Softmax
摘抄:https://xienaoban.github.io/posts/2106.html 1. 调试(Tuning) 超参数 取值 #学习速率:\(\alpha\) Momentum:\(\bet ...
随机推荐
- 摄像头ISP系统原理(下)
摄像头ISP系统原理(下) l WDR(Wide Dynamic Range)------宽动态 动态范围(Dynamic Range)是指摄像机支持的最大输出信号和最小输出信号的比值,或者说图像最 ...
- Paddle Inference原生推理库
Paddle Inference原生推理库 深度学习一般分为训练和推理两个部分,训练是神经网络"学习"的过程,主要关注如何搜索和求解模型参数,发现训练数据中的规律,生成模型.有了训 ...
- FCN与U-Net语义分割算法
FCN与U-Net语义分割算法 图像语义分割(Semantic Segmentation)是图像处理和是机器视觉技术中关于图像理解的重要一环,也是 AI 领域中一个重要的分支.语义分割即是对图像中每一 ...
- 分布式 redis 延时任务 基于 springboot 示例
Lilishop 技术栈 官方公众号 & 开源不易,如有帮助请点Star 介绍 官网:https://pickmall.cn Lilishop 是一款Java开发,基于SpringBoot研发 ...
- 谁才是智能家居的未来?视声M+O融合方案给出答案
有些智能家居,你不能说它不智能. 但在现实生活中,常常帅不过一秒. 就比如,当你经历了一天的疲惫后回到家,发现玄关的智能开关突然没反应,家里的灯怎么都打不开.这种时候你得明白,你的智能开关面板很有可能 ...
- mysqldump 使用规范
数据库很重要,没有备份,数据丢失只能跑路.所以还是做好备份吧! 目录 一.工具介绍 二.工具特点 三.备份权限 四.工具使用限制 五.已知BUG 六.备份前注意事项 6.1 需要长时间备份或导入时,请 ...
- java并发编程JUC第十一篇:如何在线程之间进行对等数据交换
java.util.concurrent.Exchanger可以用来进行数据交换,或者被称为"数据交换器".两个线程可以使用Exchanger交换数据,下图用来说明Exchange ...
- 基于ABP落地领域驱动设计-00.目录和小结
<实现领域驱动设计> -- 基于 ABP Framework 实现领域驱动设计实用指南 翻译缘由 自 ABP vNext 1.0 开始学习和使用该框架,被其优雅的设计和实现吸引,适逢 AB ...
- ceph-csi源码分析(4)-rbd driver-controllerserver分析
更多ceph-csi其他源码分析,请查看下面这篇博文:kubernetes ceph-csi分析目录导航 ceph-csi源码分析(4)-rbd driver-controllerserver分析 当 ...
- python读取txt文件绘制散点图
方法和画折线图类似,差别在于画图函数不一样,用的是scatter() import matplotlib.pyplot as plt #以外部两个txt表分别作为x,y画图n=0m=0with ope ...