可变参数

可变参数是指函数的参数的数据类型和数量都是不固定的。

printf函数的参数就是可变的。这个函数的原型是:int printf(const char *format, ...)

用一段代码演示printf的用法。

// code-A
#include <stdio.h>
int main(int argc, char **argv)
{
printf("a is %d, str is %s, c is %c\n", 23, "Hello, World;", 'A');
printf("T is %d\n", 78);
return 0;
}

在code-A中,第一条printf语句有4个参数,第二条printf语句有2个参数。显然,printf的参数是可变的。

实现

代码

code-A

先看两段代码,分别是code-A和code-B。

// file stack-demo.c

#include <stdio.h>

// int f(char *fmt, int a, char *str);
int f(char *fmt, ...);
int f2(char *fmt, void *next_arg);
int main(int argc, char *argv)
{
char fmt[20] = "hello, world!";
int a = 10;
char str[10] = "hi";
f(fmt, a, str);
return 0;
} // int f(char *fmt, int a, char *str)
int f(char *fmt, ...)
{
char c = *fmt;
void *next_arg = (void *)((char *)&fmt + 4);
f2(fmt, next_arg);
return 0;
} int f2(char *fmt, void *next_arg)
{
printf(fmt);
printf("a is %d\n", *((int *)next_arg));
printf("str is %s\n", *((char **)(next_arg + 4))); return 0;
}

编译执行,结果如下:

# 编译
[root@localhost c]# gcc -o stack-demo stack-demo.c -g -m32
# 反汇编并把汇编代码写入dis-stack.asm中
[root@localhost c]# objdump -d stack-demo>dis-stack.asm
[root@localhost c]# ./stack-demo
hello, world!a is 10
str is hi

code-B

// file stack-demo.c

#include <stdio.h>

// int f(char *fmt, int a, char *str);
int f(char *fmt, ...);
int f2(char *fmt, void *next_arg);
int main(int argc, char *argv)
{
char fmt[20] = "hello, world!";
int a = 10;
char str[10] = "hi";
char str2[10] = "hello";
f(fmt, a, str, str2);
return 0;
} // int f(char *fmt, int a, char *str)
int f(char *fmt, ...)
{
char c = *fmt;
void *next_arg = (void *)((char *)&fmt + 4);
f2(fmt, next_arg);
return 0;
} int f2(char *fmt, void *next_arg)
{
printf(fmt);
printf("a is %d\n", *((int *)next_arg));
printf("str is %s\n", *((char **)(next_arg + 4)));
printf("str2 is %s\n", *((char **)(next_arg + 8))); return 0;
}

编译执行,结果如下:

# 编译
[root@localhost c]# gcc -o stack-demo stack-demo.c -g -m32
# 反汇编并把汇编代码写入dis-stack.asm中
[root@localhost c]# objdump -d stack-demo>dis-stack.asm
[root@localhost c]# ./stack-demo
hello, world!a is 10
str is hi
str2 is hello

分析

在code-A中,调用f的语句是f(fmt, a, str);;在code-B中,调用f的语句是f(fmt, a, str, str2);

很容易看出,int f(char *fmt, ...);就是参数可变的函数。

关键语句

实现可变参数的关键语句是:

char c = *fmt;
void *next_arg = (void *)((char *)&fmt + 4);
printf("a is %d\n", *((int *)next_arg));
printf("str is %s\n", *((char **)(next_arg + 4)));
printf("str2 is %s\n", *((char **)(next_arg + 8)));
  1. &fmt是第一个参数的内存地址。
  2. next_arg是第二个参数的内存地址。
  3. next_arg+4next_arg+8分别是第三个、第四个参数的内存地址。

为什么

内存地址的计算方法

先看一段伪代码。这段伪代码是f函数的对应的汇编代码。假设f有三个参数。当然f也可以有四个参数或2个参数。我们用三个参数的情况来观察一下f。

f:
; 入栈ebp
; 把ebp设置为esp ; ebp + 0 存储的是 eip,由call f入栈
; ebp + 4 存储的是 旧ebp
; 第一个参数是 ebp + 8
; 第二个参数是 ebp + 12
; 第三个参数是 ebp + 16 ; 函数f的逻辑 ; 出栈ebp。ebp恢复成了刚进入函数之前的旧ebp
; ret

调用f的伪代码是:

; 入栈第三个参数
; 入栈第二个参数
; 入栈第一个参数
; 调用f,把eip入栈

在汇编代码中,第一个参数的内存地址很容易确定,第二个、第三个还有第N个参数的内存地址也非常容易确定。无法是在ebp的基础上增加特定长度而已。

可是,我们只能确定,必定存在第一个参数,不能确定是否存在的二个、第三个还有第N个参数。没有理由使用一个可能不存在的参数作为参照物、并且还要用它却计算其他参数的地址。

第一个参数必定存在,所以,我们用它作为确定其他参数的内存地址的参照物。

内存地址

在f函数的C代码中,&fmt是第一个参数占用的f的栈的元素的内存地址,换句话说,是一个局部变量的内存地址。

局部变量的内存地址不能作为函数的返回值,却能够在本函数执行结束前使用,包括在本函数调用的其他函数中使用。这就是在f2中仍然能够使用fmt计算出来的内存地址的原因。

难点

当参数是int类型时,获取参数的值使用*(int *)(next_arg)

当参数是char str[20]时,获取参数的值使用*(char **)(next_arg + 4)

为什么不直接使用next_arg(next_arg + 4)呢?

分析*(int *)(next_arg)

在32位操作系统中,任何内存地址的值看起来都是一个32位的正整数。可是这个正整数的值的类型并不是unsigned int,而是int *

关于这点,我们可以在gdb中使用ptype确认一下。例如,有一小段代码int *a;*a = 5;,执行ptype a,结果会是int *

next_arg只是一个正整数,损失了它的数据类型,我们需要把数据类型补充进来。我们能够把这个操作理解成”强制类型转换“。

至于*(int *)(next_arg)前面的*,很容易理解,获取一个指针指向的内存中的值。

用通用的方式分析*(char **)(next_arg+4)

  1. 因为是第三个参数,因此next_arg+4
  2. 因为第三个参数的数据类型是char str[20]。根据经验,char str[20]对应的指针是char *
  3. 因为next_arg+4只是函数的栈的元素的内存地址,在目标元素中存储的是一个指针。也就是说,next_arg+4是一个双指针类型的指针。它最终又指向字符串,根据经验,next_arg+4的数据类型是char **。没必要太纠结这一点。自己写一个简单的指向字符串的双指针,使用gdb的ptype查看这种类型的数据类型就能验证这一点。
  4. 最前面的*,获取指针指向的数据。

给出一段验证第3点的代码。

char str[20] = "hello";
char *ptr = str;
// 使用gdb的ptype 打印 ptype &ptr

打印结果如下:

Breakpoint 1, main (argc=1, argv=0xffffd3f4) at point.c:13
13 char str7[20] = "hello";
(gdb) s
14 char *ptr = str7;
(gdb) s
19 int b = 7;
(gdb) p &str
$1 = (char **) 0xffffd2fc

优化

在code-A和code-B中,我们人工根据参数的类型来获取参数,使用*(int *)(next_arg)*(char **)(next_arg + 4)

库函数printf显然不是人工识别参数的类型。

这个函数的第一个参数中包含%d%x%s等占位符。遍历第一个参数,识别出%d,就用*(int *)next_arg替换%d。识别出

%s,就用*(char **)next_arg

实现了识别占位符并且根据占位符选择指针类型的功能,就能实现一个完成度很高的可变参数了。

C语言怎么实现可变参数的更多相关文章

  1. C语言中的可变参数-printf的实现原理

    C语言中的可变参数-printf的实现原理 在C/C++中,对函数参数的扫描是从后向前的.C/C++的函数参数是通过压入堆栈的方式来给函数传参数的(堆栈是一种先进后出的数据结构),最先压入的参数最后出 ...

  2. C语言中函数可变参数解析

    大多数时候,函数中形式参数的数目通常是确定的,在调用时要依次给出与形式参数对应的所有实际参数.但在某些情况下希望函数的参数个数可以根据需要确定.典型的例子有 大家熟悉的函数printf().scanf ...

  3. C语言中的可变参数函数的浅析(以Arm 程序中的printf()函数实现为例) .

    我们在C语言编程中会遇到一些参数个数可变的函数,一般人对它的实现不理解.例如Printf(): Printf()函数是C语言中非常常用的一个典型的变参数函数,它 的原型为: int printf( c ...

  4. C语言中的可变参数函数

    C语言编程中有时会遇到一些参数个数可变的函数,例如printf()函数,其函数原型为: int printf( const char* format, ...); 它除了有一个参数format固定以外 ...

  5. c语言中的# ## 可变参数宏 ...和_ _VA_ARGS_ _

    1.#假如希望在字符串中包含宏参数,ANSI C允许这样作,在类函数宏的替换部分,#符号用作一个预处理运算符,它可以把语言符号转化程字符串.例如,如果x是一个宏参量,那么#x可以把参数名转化成相应的字 ...

  6. 【C/C++开发】C语言实现函数可变参数

    函数原型: int printf(const char *format[,argument]...)        返 回 值: 成功则返回实际输出的字符数,失败返回-1.  函数说明:        ...

  7. C语言笔记 12_可变参数&内存管理&命令行参数

    可变参数 有时,您可能会碰到这样的情况,您希望函数带有可变数量的参数,而不是预定义数量的参数.C 语言为这种情况提供了一个解决方案,它允许您定义一个函数,能根据具体的需求接受可变数量的参数.下面的实例 ...

  8. C语言学习020:可变参数函数

    顾名思义,可变参数函数就是参数数量可变的函数,即函数的参数数量是不确定的,比如方法getnumbertotal()我们即可以传递一个参数,也可以传递5个.6个参数 #include <stdio ...

  9. C语言之函数可变参数

    先上一段代码: #include<cstdarg> #include<iostream> #include<string> using namespace std; ...

  10. 各种语言中的可变参数(java、python、c++、javascript)

    索引: java python c++ js 1.Java public class Animal { // 接受可变参数的方法 void eat(String... Objects) { for ( ...

随机推荐

  1. SOLO: 按位置分割对象

    SOLO: 按位置分割对象 SOLO: Segmenting Objectsby Locations 论文链接: https://arxiv.org/pdf/1912.04488.pdf 代码链接: ...

  2. GPU加速计算

    GPU加速计算 NVIDIA A100 Tensor Core GPU 可针对 AI.数据分析和高性能计算 (HPC),在各种规模上实现出色的加速,应对极其严峻的计算挑战.作为 NVIDIA 数据中心 ...

  3. HAL库|神器cubemx的正确打开方式

    前言 工欲善其事,必先利其器.HAL库的开发不一定必须使用cubemx,但是使用了cubemx,你绝对不会后悔.基于一些小伙伴对cubemx的使用还有一些疑问,本次小飞哥从新建工程到生成工程,编写应用 ...

  4. kali2020.4安装openvas(gvm)

    记录一下,方便复习 1.更换kali源,默认源注释掉. sudo vim /etc/apt/sources.list 中科大 deb http://mirrors.ustc.edu.cn/kali k ...

  5. python小知识,列表推导式

    使用列表推导式可以快速生成一个列表,或者根据某个列表生成满足指定需求的列表. 1.生成指定范围的数值列表,语法格式如下: list=[Expression for var in range if co ...

  6. Fedora 34成哑巴了?

    原由 前几天刚更新了Fedora34,完全沉浸在Gnome40的喜悦中.但是今天用耳机听Apple Music的时候完全傻了,音量控制旋钮调了半天也没有声音,难道声卡坏了?于是,我试探性的用Parro ...

  7. 关于spooling的一些理解

    spooling做了什么 1.将独占设备(打印机)虚拟化,变成一个逻辑上的共享设备. 怎么理解?虚拟化,通俗来讲,就是让单个资源仿似变成了多个资源. 以打印机为例,没有虚拟化之前,只能有一个进程申请到 ...

  8. 【题解】10-19秀秀的森林(forest)

    我恨秀秀倍增LCA+离线 (时光倒流) 题目 秀秀有一棵带n个顶点的树T,每个节点有一个点权ai-.有一天,她想拥有两棵树,于是她从T中删去了一条边.第二天,她认为三棵树或许会更好一些.因此,她又从她 ...

  9. xshell连接时报错:Could not connect to '192.168.2.125' (port 22): Connection failed.

    解决思路: 1.首先用主机ping下虚拟机IP,看是否能ping通 2.如果ping不通就看虚拟机防火墙是否开启,service iptables status [root@mysql ~]# ser ...

  10. C#关于数据库中存储的用户权限类似 "普通员工,管理员" 如何在代码中读取分析权限

    之前在看某些数据库的用户权限的表时,发现字段是这样类似这样存储的"  普通员工,管理员 ",当时觉得他们是通过分割字符串来分析权限的.后来读到 Liam Wang  的 https ...