简要题解如下:

  1. 区间修改问题,使用差分转化为单点问题。

  2. 问题变成,一开始有 \(2n\) 个点为 \(1\),每次操作可以选择 \(r - l\) 为奇质数的两个点 \(l, r\) 使其 ^ \(1\)。

  3. 根据哥德巴赫猜想可以发现,若 \(r - l\) 为奇质数显然一次即可,若 \(r - l\) 为偶数则需两次,若 \(r - l\) 为奇数则需三次。

  4. 近一步可以发现,若想消去两个点 \(l, r\) 则涉及其他点是可以通过调整使得直接消去两个点的。

  5. 更近一步可以发现,将所有点按照奇偶分类,显然若消去奇偶性相同的两个数只能 \(2\) 次,那么首先将差是奇质数的点一起消去肯定是最优的。

  6. 因为差是奇质数的点必然一个为偶数一个为奇数构成二分图,于是可以使用匈牙利或网络流解决二分图最大匹配问题。

  7. 剩下的肯定要同集合内部按照 \(2\) 次消去,最后若还剩一个元素才使用 \(3\) 次的方法。

#include <bits/stdc++.h>
using namespace std;
#define rep(i, l, r) for (int i = l; i <= r; ++i)
#define Next(i, u) for (int i = cur[u]; i; i = e[i].next)
const int N = 2e4 + 5;
const int M = 1e7 + 5;
struct edge { int v, next, w;} e[N << 1];
int n, s, t, F, ans, cnt, tot = 1, ton[2], a[N], h[N], d[M];
namespace PR {
bool iprime[M]; int tot, prime[M];
void sieve(int L) {
iprime[1] = 1;
rep(i, 2, L) {
if(!iprime[i]) prime[++tot] = i;
for (int j = 1; j <= tot && i * prime[j] <= L; ++j) {
iprime[i * prime[j]] = true;
if(i % prime[j] == 0) break;
}
}
}
}
namespace FL {
bool book[N]; int dep[N], cur[N];
bool bfs(int s, int t) {
rep(i, s, t) cur[i] = h[i], dep[i] = -t;
queue <int> Q;
dep[s] = 1, Q.push(s);
while (!Q.empty()) {
int u = Q.front(); Q.pop();
Next(i, u) {
int v = e[i].v; if(!e[i].w || dep[v] > 0) continue;
dep[v] = dep[u] + 1, Q.push(v);
}
}
return dep[t] > 0;
}
int dfs(int u, int lim) {
if(u == t) return lim;
int flow = 0, rflow = 0; book[u] = true;
Next(i, u) {
int v = e[i].v; cur[u] = i;
if(!book[v] && dep[v] == dep[u] + 1 && e[i].w && (rflow = dfs(v, min(e[i].w, lim)))) {
flow += rflow, lim -= rflow, e[i].w -= rflow, e[i ^ 1].w += rflow;
if(!lim) break;
}
}
book[u] = false; return flow;
}
}
void add(int u, int v, int w) {
e[++tot].v = v, e[tot].w = w, e[tot].next = h[u], h[u] = tot;
e[++tot].v = u, e[tot].w = 0, e[tot].next = h[v], h[v] = tot;
}
int main () {
cin >> n;
rep(i, 1, n) cin >> a[i], d[a[i]] ^= 1, d[a[i] + 1] ^= 1;
PR :: sieve(M - 1);
s = cnt = 1;
rep(i, 1, M - 1) if(d[i]) a[++cnt] = i, ++ton[i & 1];
t = ++cnt;
rep(i, 2, cnt - 1) {
if(a[i] & 1) add(s, i, 1);
else add(i, t, 1);
}
rep(i, 2, cnt - 1) if(a[i] & 1) {
rep(j, 2, cnt - 1) if(!(a[j] & 1) && !(PR :: iprime[abs(a[j] - a[i])])) add(i, j, 1);
}
while (FL :: bfs(s, t)) ans += FL :: dfs(s, cnt);
if((ton[0] - ans) & 1) F = 1;
ans += 2 * ((ton[0] - ans) / 2 + (ton[1] - ans) / 2);
ans += F * 3;
printf("%d", ans);
return 0;
}

首先区间修改差分转单点是非常重要的,可以减少有效修改点数,方便于观察问题。

对于某个数能被质数 / 奇质数组成的问题,一定要敏锐地想到 哥德巴赫猜想

AT2689 [ARC080D] Prime Flip的更多相关文章

  1. [Arc080F]Prime Flip

    [Arc080F]Prime Flip Description 你有无限多的"给给全",编号为1,2,3,....开始时,第x1,x2,...,xN个"给给全" ...

  2. AT2689 Prime Flip

    传送门 这个题是真的巧妙 首先一个很巧妙的思路,差分 考虑假如\(a_i!=a_{i-1}\),则\(b_i=1\),否则\(b_i=0\) 这样一来,一个区间的翻转就变成了对于两个数的取反了 然后我 ...

  3. Prime Flip AtCoder - 2689

    发现我们每次区间取反,相邻位置的正反关系只有两个位置发生改变 我们定义bi为ai和ai-1的正反关系,即ai=ai-1时bi=0,否则bi=1,每次取反l~r,b[l]和b[r+1]会发生改变 容易发 ...

  4. 【arc080F】Prime Flip

    Portal --> arc080_f Solution ​  这题的话..差分套路题(算吗?反正就是想到差分就很好想了qwq) ​​  (但是问题就是我不会这种套路啊qwq题解原话是:&quo ...

  5. 【ARC080F】Prime Flip 差分+二分图匹配

    Description ​ 有无穷个硬币,初始有n个正面向上,其余均正面向下.  你每次可以选择一个奇质数p,并将连续p个硬币都翻转.  问最小操作次数使得所有硬币均正面向下. Input ​ 第一行 ...

  6. 【Atcoder】ARC 080 F - Prime Flip

    [算法]数论,二分图最大匹配 [题意]有无限张牌,给定n张面朝上的牌的坐标(N<=100),其它牌面朝下,每次操作可以选定一个>=3的素数p,并翻转连续p张牌,求最少操作次数使所有牌向下. ...

  7. [atARC080F]Prime Flip

    构造一个数组$b_{i}$(初始为0),对于操作$[l_{i},r_{i}]$,令$b_{l_{i}}$和$b_{r_{i}+1}$值异或1,表示$i$和$i-1$的差值发生改变,最终即要求若干个$b ...

  8. Java基础之写文件——从多个缓冲区写(GatheringWrite)

    控制台程序,使用单个写操作将数据从多个缓冲区按顺序传输到文件,这称为集中写(GatheringWrite)操作.这个功能的优势是能够避免在将信息写入到文件中之前将信息复制到单个缓冲区中.从每个缓冲区写 ...

  9. Atcoder 乱做

    最近感觉自己思维僵化,啥都不会做了-- ARC103 F Distance Sums 题意 给定第 \(i\) 个点到所有点的距离和 \(D_i\) ,要求构造一棵合法的树.满足第 \(i\) 个点到 ...

随机推荐

  1. 【Java笔记】zipInputStream使用注意

    报错: MALFORMED java.lang.IllegalArgumentException 1. 记得使cry catch 方便找异常的位置 2. 使用zipInputStream打开的zip文 ...

  2. Exponential family of distributions

    目录 定义 性质 极大似然估计 最大熵 例子 Bernoulli 指数分布 正态分布 Choi H. I. Lecture 4: Exponential family of distributions ...

  3. Class Activation Mapping (CAM)

    目录 概 主要内容 CAM Grad-CAM Grad-CAM++ Score-CAM 最后 代码 Zhou B., Khosla A., Lapedriza A., Oliva A. and Tor ...

  4. <数据结构>XDOJ326.网络延时

    问题与解答 问题描述 有N个网络节点,标记为1到N. 给定一个二维数组times[M][3],表示信号经过有向边的传递时间.times[i][3] = {u, v, w}, 其中u是源节点,v是目标节 ...

  5. Flink sql 之 微批处理与MiniBatchIntervalInferRule (源码分析)

    本文源码基于flink1.14 平台用户在使用我们的flinkSql时经常会开启minaBatch来优化状态读写 所以从源码的角度具体解读一下miniBatch的原理 先看一下flinksql是如何触 ...

  6. 编写Java程序,应用客户端和服务端通过 Eclipse 控制台的输入和显示实现简易的聊天功能

    查看本章节 查看作业目录 需求说明: 应用客户端和服务端通过 Eclipse 控制台的输入和显示实现简易的聊天功能 实现思路: 创建 Java 项目,在项目中创建服务端类 ChatServerThre ...

  7. Java高级程序设计作业目录(作业笔记)

    持续更新中............. Java高级程序设计笔记 • [目录] 我的大学笔记>>> 第1章 IO流>>> 1.1.3 编写Java程序,在电脑硬盘里, ...

  8. Selenium_获取界面handle、title和url(7)

    from selenium import webdriver driver = webdriver.Chrome() driver.maximize_window() driver.get(" ...

  9. 详谈 Java工厂 --- 静态工厂 【简单工厂模式】

    1.前言 什么是工厂模式? 就是为了尽可能将代码的耦合度降低而产生的设计模式. 这篇随笔讲解静态工厂的思路和具体操作. 2.总结 (1)静态工厂又称 简单 工厂模式 ,是最最简单的工厂模式. (2)优 ...

  10. 网络协议学习笔记(二)物理层到MAC层,交换机和VLAN,ICMP与ping原理

    概述 之前网络学习笔记主要讲解了IP的诞生,或者说整个操作系统的诞生,一旦有了IP,就可以在网络的环境里和其他的机器展开沟通了.现在开始给大家讲解关于网络底层的相关知识. 从物理层到MAC层:如何在宿 ...