概要

数据湖的业务场景主要包括对数据库、日志、文件的分析,而管理数据湖有两点比较重要:写入的吞吐量和查询性能,这里主要说明以下问题:

    1、为了获得更好的写入吞吐量,通常把数据直接写入文件中,这种情况下会产生很多小的数据文件。虽然小文件的使用可以增加写入的并行度,且能够并行读取文件以提高读取速度,但会出现一个数据量很小,需要从多个小文件中读取数据,增加了很多IO。 

    2、数据按照进入数据湖的方式写入到文件中,在同一个文件上,数据局部性不是最佳的。 数据之间,与传入批次相关,相近的批次的数据会相关联,而不是与经常要查询的数据相关联。所以小文件的大小和缺乏数据局部性会降低查询性能。

   3、此外,许多文件系统(包括 hdfs),当有很多小文件时,性能会下降。

hudi clustering

hudi支持clustering功能,在不影响查询性能的情况下提高写入吞吐量。该功能可以以不同方式重写数据:

1、数据先写入小文件,在满足某些条件后(例如经过的时间、小文件数量、commit次数等),将小文件拼接成大文件。

2、通过对不同列上的数据进行排序,来更改磁盘上的数据布局,已提高数据间的相关性,可以提高查询性能。

实现

(用户可以将小文件的限制 hoodie.parquet.small.file.limit 配置为 0,这样可以强制将数据进入新的文件组。)

cow表的timeline

在上面的示例流程图中,显示了随时间(t5 到 t9)的分区状态。 主要有以下步骤:

  1. 在 t5,表中的一个分区有 5 个文件组 f0、f1、f2、f3、f4,分别在 t0、t1、t2、t3、t4时刻被创建。 假设每个文件组为 100MB。 所以分区中的总数据为 500MB。
  2. 在 t6 请求 clustering 操作。 与压缩类似,我们在带有“ClusteringPlan”的元数据中创建了一个“t6.clustering.requested”文件,其中包含跨所有分区的集群操作涉及的所有文件组。例如:{ partitionPath: {“datestr”}, oldfileGroups: [ {fileId: “f0”, time: “t0”}, { fileId: “f1”, time: “t1”}, ... ], newFileGroups: [“c1”, “c2”] }
  3. 假设clustering后的最大文件大小配置为 250MB。 集群会将分区中的所有数据重新分配到两个文件组中:c1、c2。 此时这些文件组是“虚假”的,在 t8 clustering 完成之前,对查询不可见。
  4. 请注意,文件组中的记录可以拆分为多个文件组。 在此示例中,来自 f4 文件组的一些记录同时转到了新文件组 c1、c2。
  5. 当集群正在进行时(t6 到 t8),任何涉及到这些文件组的更新插入都会被拒绝。
  6. 在写入新的数据文件 c1-t6.parquet 和 c2-t6.parquet 后,如果配置了全局索引,我们会在记录级索引中为所有具有新位置的键添加条目。 新的索引条目对其他写入将不可见,因为还没有关联的提交。
  7. 最后,我们创建一个提交元数据文件“t6.commit”,其中包含由此次提交修改的文件组(f0、f1、f2、f3、f4)。
  8. 注:文件组(f0 到 f4)不会立即从磁盘中删除。 cleaner 会在归档 t6.commit 之前清理这些文件。 并且,clustering 还会更新所有视图和源数据文件。

mor表的时间线

这种方法同样支持mor表,且过程与cow 表非常相似。

clustering 的为 parquet 格式文件。

Clustering 操作步骤

总体来说,需要两步:

  1. clustering 调度:创建 clustering 计划
  2. 执行 clustering:执行计划。创建新的文件,并替换旧的文件。

clustering 调度

  1. 识别符合集群条件的文件

    1. 过滤特定分区(根据配置优先考虑最新分区或旧分区)
    2. 任何大小 > targetFileSize 的文件都不符合条件
    3. 任何有待定压缩/clustering计划的文件都不符合条件
    4. 任何具有日志文件的文件组都不符合集群条件(该限制以后可能会被取消)
  2. 根据特定条件对符合聚类条件的文件进行分组。 每个组的数据大小预计是“targetFileSize”的倍数。 分组是作为计划中定义的“策略”的一部分完成的:
    1. 根据记录键范围对文件进行分组。因为键值范围存储在parquet footer中,这个可用于某些查询/更新。
    2. 根据提交时间对文件进行分组。
    3. 对自定义列,且具有重叠值的文件进行分组(指定列进行排序)
    4. 分组随机文件
    5. 我们可以限制组大小以提高并行性
  3. 根据特定条件过滤组(类似于 CompactionStrategy 中的 orderAndFilter)
  4. 最后,clustering计划被保存到timeline中。

执行 clustering

  1. 读取clustering计划,查看“clusteringGroups”的数量(用于并行性)。
  2. 创建 inflight状态的 clustering 文件
  3. 对于每组:
    1. 使用 strategyParams 实例化适当的策略类(例如:sortColumns)
    2. 策略类定义了分区器,我们可以用它来创建桶并写入数据。
  4. 创建 replacecommit:
    1. operationType 设置为“clustering”。
    2. 扩展元数据,并存储附加字段以跟踪重要信息(策略类可以返回这些额外的元数据信息)
      1. 用于合并文件的策略
      2. 跟踪替换文件

【参考】

https://hudi.apache.org/docs/next/configurations/#hoodieclusteringplanstrategyclass

https://cwiki.apache.org/confluence/display/HUDI/RFC+-+19+Clustering+data+for+freshness+and+query+performance

hudi clustering 数据聚集(一)的更多相关文章

  1. hudi clustering 数据聚集(二)

    小文件合并解析 执行代码: import org.apache.hudi.QuickstartUtils._ import scala.collection.JavaConversions._ imp ...

  2. hudi clustering 数据聚集(三 zorder使用)

    目前最新的 hudi 版本为 0.9,暂时还不支持 zorder 功能,但 master 分支已经合入了(RFC-28),所以可以自己编译 master 分支,提前体验下 zorder 效果. 环境 ...

  3. 基于Apache Hudi构建数据湖的典型应用场景介绍

    1. 传统数据湖存在的问题与挑战 传统数据湖解决方案中,常用Hive来构建T+1级别的数据仓库,通过HDFS存储实现海量数据的存储与水平扩容,通过Hive实现元数据的管理以及数据操作的SQL化.虽然能 ...

  4. KLOOK客路旅行基于Apache Hudi的数据湖实践

    1. 业务背景介绍 客路旅行(KLOOK)是一家专注于境外目的地旅游资源整合的在线旅行平台,提供景点门票.一日游.特色体验.当地交通与美食预订服务.覆盖全球100个国家及地区,支持12种语言和41种货 ...

  5. 【mongoDB高级篇②】大数据聚集运算之mapReduce(映射化简)

    简述 mapReduce从字面上来理解就是两个过程:map映射以及reduce化简.是一种比较先进的大数据处理方法,其难度不高,从性能上来说属于比较暴力的(通过N台服务器同时来计算),但相较于grou ...

  6. MySQL必知必会(汇总数据, 聚集函数)

    SELECT AVG(prod_price) AS avg_price FROM products; #AVG只能用于单个列求平均值,如想计算多个列,必须用多个AVG() SELECT AVG(pro ...

  7. 对话Apache Hudi VP, 洞悉数据湖的过去现在和未来

    Apache Hudi是一个开源数据湖管理平台,用于简化增量数据处理和数据管道开发,该平台可以有效地管理业务需求,例如数据生命周期,并提高数据质量.Hudi的一些常见用例是记录级的插入.更新和删除.简 ...

  8. 一文彻底掌握Apache Hudi异步Clustering部署

    1. 摘要 在之前的一篇博客中,我们介绍了Clustering(聚簇)的表服务来重新组织数据来提供更好的查询性能,而不用降低摄取速度,并且我们已经知道如何部署同步Clustering,本篇博客中,我们 ...

  9. 基于Apache Hudi 的CDC数据入湖

    作者:李少锋 文章目录: 一.CDC背景介绍 二.CDC数据入湖 三.Hudi核心设计 四.Hudi未来规划 1. CDC背景介绍 首先我们介绍什么是CDC?CDC的全称是Change data Ca ...

随机推荐

  1. test,exec,match,replace方法区别 正则

    这四种方法都是用来检测字符串是否包含某一子串或是否匹配否个正则表达式 test方法,匹配返回true,不匹配返回false match,匹配返回匹配到的数组(包含多次/g),匹配一次返回包含匹配子串的 ...

  2. 《DotNet Web应用单文件部署系列》三、混淆dll文件

    众所周知,C#编译后的dll文件可被反编译,网上搜索"C# 反编译"会出现一大堆资料.为了提高反编译成本,我们必须对dll文件进行混淆处理. 目前,C#混淆工具很多,我推荐obfu ...

  3. 鸿蒙内核源码分析(定时器篇) | 哪个任务的优先级最高 | 百篇博客分析OpenHarmony源码 | v31.02

    百篇博客系列篇.本篇为: v31.xx 鸿蒙内核源码分析(定时器篇) | 哪个任务的优先级最高 | 51.c.h .o 本篇说清楚定时器的实现 读本篇之前建议先读鸿蒙内核源码分析(总目录)其余篇. 运 ...

  4. Loj#143-[模板]质数判定【Miller-Rabin】

    正题 题目链接:https://loj.ac/p/143 题目大意 给出一个数\(p\),让你判定是否为质数. 解题思路 \(Miller-Rabin\)是一种基于费马小定理和二次探测定理的具有较高正 ...

  5. Python3入门系列之-----异常处理

    前言 作为 Python 初学者,在刚学习 Python 编程时,经常会看到一些报错信息,在前面我们没有提及,这章节我们会专门介绍. Python 有两种错误很容易辨认:语法错误和异常. Python ...

  6. bzoj5210最大连通子块和 (动态dp+卡常好题)

    卡了一晚上,经历了被卡空间,被卡T,被卡数组等一堆惨惨的事情之后,终于在各位大爹的帮助下过了这个题qwqqq (全网都没有用矩阵转移的动态dp,让我很慌张) 首先,我们先考虑一个比较基础的\(dp\) ...

  7. HashMap、ConcurrentHashMap红黑树实现分析

    本文学习知识点 1.二叉查找树,以及二叉树查找带来的问题. 2.平衡二叉树及好处. 3.红黑树的定义及构造. 4.ConcurrentHashMap中红黑树的构造. 在正式分析红黑树之前,有必要了解红 ...

  8. 从原理—实战分析SQL注入

    前言 SQL注入是web安全中最常见的攻击方式,SQL注入有很多方法,但如果只知道payload或只用用sqlmap,不知道原理,感觉也很难掌握,这次就总结一下我所遇到的SQL注入方法,原理分析+题目 ...

  9. 6月4日 Scrum Meeting

    日期:2021年6月4日 会议主要内容概述:讨论账单功能模块,讨论账单前后端接口. 一.进度情况 组员 负责 两日内已完成的工作 后两日计划完成的工作 工作中遇到的困难 徐宇龙 后端 账单数据界面 设 ...

  10. luogu P2746 [USACO5.3]校园网Network of Schools 题解

    前言: 火星题... 但是我调了半天,最后看了题解才明白. Wtcl 解析: 显然先缩个点. 第一问,就是问多少入度为0的点. 第二问,抽象一下就是要添加一些边,让一个DAG变成一个SCC,求最小边数 ...