Link

  https://jzoj.net/senior/#main/show/1115

Description

  申准备报名参加GT考试,准考证号为n位数X1X2X3...Xn-1Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字。
他的不吉利数字A1A2A3...Am-1Am(0<=Ai<=9)有m位,不出现是指X1X2X3...Xn-1Xn 中没有恰好一段等于A1A2A3...Am-1Am。A1和X1可以为0。
  阿申想知道不出现不吉利数字的号码有多少种,输出模K取余的结果。

Solution

40分:动态规划

  考虑到这道题匹配的顺序,可以采用动态规划。

  设f[i,j]表示选到前i位,当前匹配到不吉利数字的位数j。

  枚举当前位选的数(0~9),转移显然。

  可是j的转移略微复杂。这里分三种情况

  (1)当前位选的数使得j为0

  例如不吉利数字为1101,当前匹配了3位,即101,若当前选0或2~9的数字,则j为0。

  (2)当前选的数使得j为之前某一位的数

  例如不吉利数字为11321,当前匹配了4位,即1321,若当前选2,那么我们不会将j赋值为0,为什么?

  当出现21321的情况,开头两位可以与不吉利数字开头两位(21)匹配,故j应该为2

  在如同1202,当前第4位选0,我们j应该位2

  (3)按照不吉利数字的顺序发展

  例如不吉利数字为1101,当前匹配了3位,即101,若当前选1,则j位4

  我们可以用数组p[i,j]表示数字i放在当前已匹配了j位的不吉利数字上,上述所的j是多少。

  显然有递推式(状态转移方程)

  f[i+1,p[k,j]]+=f[i,j];(k位当前数字,j为原匹配了的位数,i为准考证位数匹配)

100分:矩阵乘法

  显然可以用矩阵乘法来优化上面的递推式,用一个1*m和m*m的矩阵来弄

[jzoj]1115.【HNOI2008】GT考试的更多相关文章

  1. 1009: [HNOI2008]GT考试

    1009: [HNOI2008]GT考试 Time Limit: 1 Sec Memory Limit: 162 MB Description 阿申准备报名参加GT考试,准考证号为N位数\(X_1X_ ...

  2. 【bzoj1009】[HNOI2008]GT考试

    1009: [HNOI2008]GT考试 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 3018  Solved: 1856[Submit][Statu ...

  3. BZOJ_1009_[HNOI2008]_GT考试_(动态规划+kmp+矩阵乘法优化+快速幂)

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1009 字符串全部由0~9组成,给出一个串s,求一个长度为n的串,不包含s的种类有多少. 分析 ...

  4. BZOJ 1009: [HNOI2008]GT考试( dp + 矩阵快速幂 + kmp )

    写了一个早上...就因为把长度为m的也算进去了... dp(i, j)表示准考证号前i个字符匹配了不吉利数字前j个的方案数. kmp预处理, 然后对于j进行枚举, 对数字0~9也枚举算出f(i, j) ...

  5. [HNOI2008] GT考试

    [HNOI2008] GT考试 标签 : DP 矩阵乘法 题目链接 题意 n位数中不出现一个子串的方案数. 题解 \(设dp[i][j]\)为前i位匹配到j时的合法方案数.(所谓合法,就是不能有别的匹 ...

  6. BZOJ_1009_[HNOI2008]GT考试_KMP+矩阵乘法

    BZOJ_1009_[HNOI2008]GT考试_KMP+矩阵乘法 Description 阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考 ...

  7. BZOJ1009 [HNOI2008]GT考试 矩阵

    去博客园看该题解 题目 [bzoj1009][HNOI2008]GT考试 Description 阿申准备报名参加GT考试,准考证号为N位数X1X2….Xn(0<=Xi<=9),他不希望准 ...

  8. BZOJ 1009 [HNOI2008]GT考试 (KMP + 矩阵快速幂)

    1009: [HNOI2008]GT考试 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 4266  Solved: 2616[Submit][Statu ...

  9. bzoj1009 / P3193 [HNOI2008]GT考试

    P3193 [HNOI2008]GT考试 设$f[i][j]$表示主串匹配到第$i$个位置,不吉利数字匹配到第$j$个位置 $g[i][j]$表示加上某数字使子串原来最多能匹配到第$i$个数字,现在只 ...

  10. bzoj 1009: [HNOI2008]GT考试 -- KMP+矩阵

    1009: [HNOI2008]GT考试 Time Limit: 1 Sec  Memory Limit: 162 MB Description 阿申准备报名参加GT考试,准考证号为N位数X1X2.. ...

随机推荐

  1. Hadoop基础-镜像文件(fsimage)和编辑日志(edits)

    Hadoop基础-镜像文件(fsimage)和编辑日志(edits) 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.查看日志镜像文件(如:fsimage_00000000000 ...

  2. Git 分支(一)简介&创建分支

    理解Git暂存区 文件.git/index是一个包含文件索引的目录树,像是一个虚拟的工作区.在这个虚拟工作区的目录树中,记录了文件名和文件的状态信息.以便快速检测文件的变化.              ...

  3. ios打包 上架 了解

    苹果开发者中心  https://developer.apple.com/account 上架收费相关了解 https://www.jianshu.com/p/681f00a561ca ios打包 上 ...

  4. [物理学与PDEs]第2章习题12 严格凸性的转换

    设 $L=L(\xi_0,\xi_1,\cdots,\xi_n)$ 关于变量 $\xi_0>0,\xi_1,\cdots,\xi_n$ 为严格凸的. 证明函数 $$\bex M=\cfrac{1 ...

  5. MD1——2 Corner

    基本句型 被分为 5 种全然因为[动词] 造成的. 那么补语 就是因为 动词被解释成“是”的时候所需要的一种补足. [补语 Complement 传统的毒瘤说法] 不完全不及物动词 不完全及物动词~~ ...

  6. Xvector in Kaldi nnet3

    Xvector nnet Training of Xvector nnet Xvector nnet in Kaldi     Statistics Extraction Layer in Kaldi ...

  7. Python中应该使用%还是format来格式化字符串?

    转载自http://www.cnblogs.com/liwenzhou/p/8570701.html %的特点是,前面有几个%,后面的括号里就得有几个参数,如果只有一个%,括号可以省略 基本格式 'a ...

  8. tengine2.2.3报错502的The proxy server received an invalid response from an upstream server问题处理

    tengine2.2.3报错502的The proxy server received an invalid response from an upstream server问题处理 现象:访问订单的 ...

  9. 【原创】大叔经验分享(7)创建hive表时格式如何选择

    常用格式 textfile 需要定义分隔符,占用空间大,读写效率最低,非常容易发生冲突(分隔符)的一种格式,基本上只有需要导入数据的时候才会使用,比如导入csv文件: ROW FORMAT DELIM ...

  10. iOS 推荐几篇关于Objective-c 动态语言的文章

    http://www.cnblogs.com/Mr-Lin/p/5771969.html https://onevcat.com/2012/04/objective-c-runtime/ 我摘抄几句比 ...