[jzoj]1115.【HNOI2008】GT考试
Link
https://jzoj.net/senior/#main/show/1115
Description
申准备报名参加GT考试,准考证号为n位数X1X2X3...Xn-1Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字。
他的不吉利数字A1A2A3...Am-1Am(0<=Ai<=9)有m位,不出现是指X1X2X3...Xn-1Xn 中没有恰好一段等于A1A2A3...Am-1Am。A1和X1可以为0。
阿申想知道不出现不吉利数字的号码有多少种,输出模K取余的结果。
Solution
40分:动态规划
考虑到这道题匹配的顺序,可以采用动态规划。
设f[i,j]表示选到前i位,当前匹配到不吉利数字的位数j。
枚举当前位选的数(0~9),转移显然。
可是j的转移略微复杂。这里分三种情况
(1)当前位选的数使得j为0
例如不吉利数字为1101,当前匹配了3位,即101,若当前选0或2~9的数字,则j为0。
(2)当前选的数使得j为之前某一位的数
例如不吉利数字为11321,当前匹配了4位,即1321,若当前选2,那么我们不会将j赋值为0,为什么?
当出现21321的情况,开头两位可以与不吉利数字开头两位(21)匹配,故j应该为2
在如同1202,当前第4位选0,我们j应该位2
(3)按照不吉利数字的顺序发展
例如不吉利数字为1101,当前匹配了3位,即101,若当前选1,则j位4
我们可以用数组p[i,j]表示数字i放在当前已匹配了j位的不吉利数字上,上述所的j是多少。
显然有递推式(状态转移方程)
f[i+1,p[k,j]]+=f[i,j];(k位当前数字,j为原匹配了的位数,i为准考证位数匹配)
100分:矩阵乘法
显然可以用矩阵乘法来优化上面的递推式,用一个1*m和m*m的矩阵来弄
[jzoj]1115.【HNOI2008】GT考试的更多相关文章
- 1009: [HNOI2008]GT考试
1009: [HNOI2008]GT考试 Time Limit: 1 Sec Memory Limit: 162 MB Description 阿申准备报名参加GT考试,准考证号为N位数\(X_1X_ ...
- 【bzoj1009】[HNOI2008]GT考试
1009: [HNOI2008]GT考试 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 3018 Solved: 1856[Submit][Statu ...
- BZOJ_1009_[HNOI2008]_GT考试_(动态规划+kmp+矩阵乘法优化+快速幂)
描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1009 字符串全部由0~9组成,给出一个串s,求一个长度为n的串,不包含s的种类有多少. 分析 ...
- BZOJ 1009: [HNOI2008]GT考试( dp + 矩阵快速幂 + kmp )
写了一个早上...就因为把长度为m的也算进去了... dp(i, j)表示准考证号前i个字符匹配了不吉利数字前j个的方案数. kmp预处理, 然后对于j进行枚举, 对数字0~9也枚举算出f(i, j) ...
- [HNOI2008] GT考试
[HNOI2008] GT考试 标签 : DP 矩阵乘法 题目链接 题意 n位数中不出现一个子串的方案数. 题解 \(设dp[i][j]\)为前i位匹配到j时的合法方案数.(所谓合法,就是不能有别的匹 ...
- BZOJ_1009_[HNOI2008]GT考试_KMP+矩阵乘法
BZOJ_1009_[HNOI2008]GT考试_KMP+矩阵乘法 Description 阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考 ...
- BZOJ1009 [HNOI2008]GT考试 矩阵
去博客园看该题解 题目 [bzoj1009][HNOI2008]GT考试 Description 阿申准备报名参加GT考试,准考证号为N位数X1X2….Xn(0<=Xi<=9),他不希望准 ...
- BZOJ 1009 [HNOI2008]GT考试 (KMP + 矩阵快速幂)
1009: [HNOI2008]GT考试 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 4266 Solved: 2616[Submit][Statu ...
- bzoj1009 / P3193 [HNOI2008]GT考试
P3193 [HNOI2008]GT考试 设$f[i][j]$表示主串匹配到第$i$个位置,不吉利数字匹配到第$j$个位置 $g[i][j]$表示加上某数字使子串原来最多能匹配到第$i$个数字,现在只 ...
- bzoj 1009: [HNOI2008]GT考试 -- KMP+矩阵
1009: [HNOI2008]GT考试 Time Limit: 1 Sec Memory Limit: 162 MB Description 阿申准备报名参加GT考试,准考证号为N位数X1X2.. ...
随机推荐
- 神经网络3_M-P模型
sklearn实战-乳腺癌细胞数据挖掘(博客主亲自录制视频教程,QQ:231469242) https://study.163.com/course/introduction.htm?courseId ...
- CMDB资产管理系统开发【day26】:Django admin
想实现的是一个表里面的字段 选择性的出现在菜单栏 1.如何自定义菜单 自定义菜单前 在asset\admin.py里添加如下代码: class NewAssetApprovalZoneAdmin(ad ...
- html设置背景图片并自适应
<style> html{ height:100%; } body{ padding: 0; margin: 0; background: url(images/2.jpg); backg ...
- Nginx--服务部署、基于域名的虚拟主机配置
一.服务部署 1.预处理 安装CentOS ,配置hosts.静态IP.设置必要的安全参数等(略) 1-1.系统环境 [root@vnx ~]# cat /etc/redhat-release Cen ...
- 2.解决虚拟机中centos联网的问题
首先:打开虚拟机的编辑菜单,选择“虚拟机网络编辑器” 虚拟机网络编辑器 在虚拟机网络编辑器中选择还原默认设置 接下来开启CentOS7虚拟机 在这里需要注意的是必需以管理员身份来进行设置,所以要用管理 ...
- LOJ 3049: 洛谷 P5284: 「十二省联考 2019」字符串问题
题目传送门:LOJ #3049. 题意简述: 给定一个长度为 \(n\) 的母串 \(S\). 有 \(n_a\) 个 A 类串,都是 \(S\) 的子串,以区间的形式给出. 有 \(n_b\) 个 ...
- MySql的事务控制(TCL语言)
⒈事务 一个或一组sql语句组成一个执行单元,这个执行单元要么全部执行,要么全部不执行. ⒉事务的特性(ACID) 1.原子性(Atomicity):一个事务不可再分割,要么都执行要么都不执行. 2. ...
- mac上安装webpack报错解决方法Hit error EACCES: permission denied, mkdir '/usr/local/lib/node_modules/webpack
node-pre-gyp WARN Using needle for node-pre-gyp https download node-pre-gyp WARN Pre-built binaries ...
- vue路由守卫(全局守卫)
router.beforeEach((to,from,next)=>{}) 回调函数中的参数, to:进入到哪个路由去, from:从哪个路由离开, next:函数,决定是否展示你要看到的路由页 ...
- java 并发 concurrent Executor
Excutor类 Executor 执行提交的对象Runnable任务. ExecutorService 一个Executor ,提供方法来管理终端和方法,可以产生Future为跟踪一个或多个异步任务 ...