poj2778(AC自动机+矩阵快速幂)
题意:给你n个字符串,问你长度为m的字符串且字符串中不含有那n个子串的字符串的数量
解题思路:这道题一开始就不太懂,还以为是组合数学的题目,后面看了别人的博客,才知道这是属于AC自动机的另一种用法,是关于fail数组的运用,因为题目问的是不允许包含那n个字符串,所以我们可以这么想,假设一个trie树每个结点都有A,T,C,G这四个儿子结点,然后我们把这n个字符串存进trie树里面,字符串的结尾标记一下,然后根据fail数组的构造,如果某个结点fail指向的结点被标记了,那么这个结点也是不允许走的,这样,一个符合条件的trie树就建立出来了,剩下的就是矩阵部分。把题目简化成是从结点0出发到其他结点走n步的的所有允许情况;
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<queue>
#include<cmath>
using namespace std;
typedef long long ll;
const int N=110;
struct matrix
{
ll mat[N][N];
matrix()
{
memset(mat,0,sizeof(mat));
}
}ans,fna;
int trie[N][4];
int fail[N],tot;
bool flag[N];
char s[15];
char c['Z'+1];
int n,m;
void build_trie(char *str)//构建trie树
{
int root=0;
int len=strlen(str);
for(int i=0;i<len;i++)
{
int id=c[str[i]];
if(trie[root][id]==0)
{
trie[root][id]=++tot;
//cout<<tot<<endl;
}
root=trie[root][id];
}
flag[root]=1;
}
void build_fail()
{
queue<int>q;
for(int i=0;i<4;i++)
{
if(trie[0][i]!=0)
q.push(trie[0][i]);
}
while(!q.empty())
{
int now=q.front();
q.pop();
if(flag[fail[now]])//如果当前结点的指向是不允许的,那么这个点也是不允许的
flag[now]=true;
for(int i=0;i<4;i++)
{
if(!trie[now][i])
{
trie[now][i]=trie[fail[now]][i];
continue;
}
fail[trie[now][i]]=trie[fail[now]][i];
q.push(trie[now][i]);
}
}
}
matrix mul(matrix x,matrix y)
{
matrix tmp;
for(int i=0;i<=tot;i++)
for(int j=0;j<=tot;j++)
for(int k=0;k<=tot;k++)
{
tmp.mat[i][j]+=x.mat[i][k]*y.mat[k][j];
tmp.mat[i][j]%=100000;
}
return tmp;
}
matrix matrixpow(matrix x,ll k)
{
matrix ret;
for(int i=0;i<=tot;i++)
ret.mat[i][i]=1;
while(k)
{
if(k&1)
ret=mul(ret,ans);
ans=mul(ans,ans);
k>>=1;
}
return ret;
}
matrix build_mat()//构建矩阵
{
matrix temp;
for(int i=0;i<=tot;i++)
{
if(flag[i])
continue;
for(int j=0;j<4;j++)
{
if(flag[trie[i][j]])continue;
++temp.mat[i][trie[i][j]];
}
}
return temp;
}
void init()
{
memset(fail,0,sizeof(fail));
memset(trie,0,sizeof(trie));
tot=0;
memset(flag,0,sizeof(flag));
c['A']=0;
c['T']=1;
c['C']=2;
c['G']=3;
}
int main()
{
init();
scanf("%d%d",&m,&n);
for(int i=1;i<=m;i++)
{
scanf("%s",s);
build_trie(s);
}
build_fail();
ans=build_mat();
fna=matrixpow(ans,n);
ll xx=0;
for(int i=0;i<=tot;i++)
{
xx+=fna.mat[0][i];xx%=100000;
}
printf("%lld\n",xx);
}
代码:
poj2778(AC自动机+矩阵快速幂)的更多相关文章
- poj2778 ac自动机+矩阵快速幂
给m个子串,求长度为n的不包含子串的母串数,最直接的应该是暴搜,肯定tle,考虑用ac自动机 将子串建成字典树,通过next表来构造矩阵,然后用矩阵快速幂求长度为n的数量 邻接矩阵https://we ...
- POJ2778 DNA Sequence(AC自动机+矩阵快速幂)
题目给m个病毒串,问不包含病毒串的长度n的DNA片段有几个. 感觉这题好神,看了好久的题解. 所有病毒串构造一个AC自动机,这个AC自动机可以看作一张有向图,图上的每个顶点就是Trie树上的结点,每个 ...
- POJ2778(SummerTrainingDay10-B AC自动机+矩阵快速幂)
DNA Sequence Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 17160 Accepted: 6616 Des ...
- poj2778DNA Sequence (AC自动机+矩阵快速幂)
转载请注明出处: http://www.cnblogs.com/fraud/ ——by fraud DNA Sequence Time Limit: 1000MS Memory ...
- HDU 2243考研路茫茫——单词情结 (AC自动机+矩阵快速幂)
背单词,始终是复习英语的重要环节.在荒废了3年大学生涯后,Lele也终于要开始背单词了. 一天,Lele在某本单词书上看到了一个根据词根来背单词的方法.比如"ab",放在单词前一般 ...
- HDU 2243 考研路茫茫――单词情结 ——(AC自动机+矩阵快速幂)
和前几天做的AC自动机类似. 思路简单但是代码200余行.. 假设solve_sub(i)表示长度为i的不含危险单词的总数. 最终答案为用总数(26^1+26^2+...+26^n)减去(solve_ ...
- POJ - 2778 ~ HDU - 2243 AC自动机+矩阵快速幂
这两题属于AC自动机的第二种套路通过矩阵快速幂求方案数. 题意:给m个病毒字符串,问长度为n的DNA片段有多少种没有包含病毒串的. 根据AC自动机的tire图,我们可以获得一个可达矩阵. 关于这题的t ...
- 考研路茫茫——单词情结 HDU - 2243 AC自动机 && 矩阵快速幂
背单词,始终是复习英语的重要环节.在荒废了3年大学生涯后,Lele也终于要开始背单词了. 一天,Lele在某本单词书上看到了一个根据词根来背单词的方法.比如"ab",放在单词前一般 ...
- POJ 2778 DNA Sequence(AC自动机 + 矩阵快速幂)题解
题意:给出m个模式串,要求你构造长度为n(n <= 2000000000)的主串,主串不包含模式串,问这样的主串有几个 思路:因为要不包含模式串,显然又是ac自动机.因为n很大,所以用dp不太好 ...
- hdu 2243 考研路茫茫——单词情结 ac自动机+矩阵快速幂
链接:http://acm.hdu.edu.cn/showproblem.php?pid=2243 题意:给定N(1<= N < 6)个长度不超过5的词根,问长度不超过L(L <23 ...
随机推荐
- git操作+一个本地项目推到github上+注意
git init 创建新文件夹,打开,然后执行以创建新的 git 仓库. git config --global user.name "xxx" git config --glob ...
- 01-html介绍和head标签
[转]01-html介绍和head标签 主要内容 web标准 浏览器介绍 开发工具介绍 HTML介绍 HTML颜色介绍 HTML规范 HTML结构详解 一.web标准 web准备介绍: w3c:万维网 ...
- iOS----------viewcontroller中的dealloc方法不调用
ios的viewcontroller生命周期是 init -> loadView -> viewDidLoad -> viewWillAppear -> viewDidAppe ...
- (简单)华为荣耀4A SCL-TL00的usb调试模式在哪里打开的方法
就在我们使用PC通过数据线连接上安卓手机的时候,如果手机没有开启Usb调试模式,PC则没办法成功检测到我们的手机,有时候,我们使用的一些功能强大的App好比之前我们使用的一个App引号精灵,老版本就需 ...
- C#中的yield return用法演示源码
下边代码段是关于C#中的yield return用法演示的代码. using System;using System.Collections;using System.Collections.Gene ...
- Netty学习笔记(五) 使用Netty构建静态网页服务器
昨天在继续完善基于Netty构建的聊天室系统的过程中,发现了一个有意思的知识点,特此拿来做一个简单的静态网页服务器,好好的玩一玩Netty. 但是不管怎么说利用netty实现各种功能的流程都是类似的 ...
- ASP.NET Core 入门教程 4、ASP.NET Core MVC控制器入门
一.前言 1.本教程主要内容 ASP.NET Core MVC控制器简介 ASP.NET Core MVC控制器操作简介 ASP.NET Core MVC控制器操作简介返回类型简介 ASP.NET C ...
- MongoDB更需要好的模式设计 及 案例赏析
一 挑战 设计从来就是个挑战. 当我们第一次接触数据库,学习数据库基础理论时,都需要学习范式,老师也一再强调范式是设计的基础.范式是这门课程中的重要部分,在期末考试中也一定是个重要考点.如果我们当年 ...
- 用 Heapster 监控集群 - 每天5分钟玩转 Docker 容器技术(176)
Heapster 是 Kubernetes 原生的集群监控方案.Heapster 以 Pod 的形式运行,它会自动发现集群节点.从节点上的 Kubelet 获取监控数据.Kubelet 则是从节点上的 ...
- Cs231n课堂内容记录-Lecture 7 神经网络训练2
Lecture 7 Training Neural Networks 2 课堂笔记参见:https://zhuanlan.zhihu.com/p/21560667?refer=intelligent ...