前天看了 criss-cross 里的注意力模型  仔细理解了  在: https://www.cnblogs.com/yjphhw/p/10750797.html

今天又看了一个注意力模型 《Self-Attention Generative Adversarial Networks》   https://arxiv.org/pdf/1805.08318v1.pdf

里边关键的还是注意力机制,又花了一个小时理解了下,感觉这种方式能够带来另一种视野的扩大,其中cnn是通过不断卷积扩大视野。

而这种注意力模型直接通过内积(矩阵的乘法)和 线性组合来直接获取全局信息,作者们都认为是注意力! 是否有其他含义还需要进一步理解。

这篇文章里关键就是注意力的产生:

这里边的操作 圆圈里的差  就是值得矩阵乘法。 整个这种注意力机制的论文多起来, 经典的style tranfer的论文也是用类似的方法计算风格损失的 格莱姆矩阵

下面就从输入x开始, x是个 c*w*h的 特征图  论文里写 c*n 是因为把w*h 展开了 。

然后三路 1*1卷积,没问题,这个操作可以先不展开。

这里我们用不展开的方式 先描述  f(x)和g(x)做 c`*1*1的卷积, h(x)是 做 c*1*1的卷积

做完后 对f(x),g(x) 在空间维度上拉开 w*h 拉开为 n=w*h

黄色的就是  c`*n    绿色也是  c`*n      大小的矩阵

对黄色的转置 就是 n*c`    然后 和绿色的就能做矩阵乘法

得到一个 n*n的矩阵。下边为了归一化参数,在列的方向上做softmax。得到了一个n*n的注意力矩阵,为什么在列方向上归一化,这是因为为了下一步和h(x)的特征图相乘

h(x)是经过 c*1*1的卷积操作,对输入x进行了一次变换的来的,同样对其拉开就成了一个 c*n的矩阵

刚才得到的注意力矩阵式n*n的,并且在列上归一化了,  所以 h(x)* attention  得到一个  (c*n) *(n*n)= c*n 大小的矩阵。

然后恢复 c*n 到 c*w*h就可以。

这样就可以看到这完全就是对每个位置和所有位置进行加权,一下子具有全局感受视野,而且每个位置的权值不同。

这可以细细体会下,这样的操作到底代表了什么。

卷积是扩大视野的方法,这种操作直接一步到位获取了全局视野。

和criss-cross的方法是在通道上,这个直接是在通道内。不太确定。

之前还有squeeze 和 excitation的注意力方法

如何结合起来,是否可以用在分类上,提升分类精度? 值得思考。

《Self-Attention Generative Adversarial Networks》里的注意力计算的更多相关文章

  1. AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks 笔记

    AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks 笔记 这 ...

  2. SAGAN:Self-Attention Generative Adversarial Networks - 1 - 论文学习

    Abstract 在这篇论文中,我们提出了自注意生成对抗网络(SAGAN),它是用于图像生成任务的允许注意力驱动的.长距离依赖的建模.传统的卷积GANs只根据低分辨率图上的空间局部点生成高分辨率细节. ...

  3. Generative Adversarial Networks overview(2)

    Libo1575899134@outlook.com Libo (原创文章,转发请注明作者) 本文章会先从Gan的简单应用示例讲起,从三个方面问题以及解决思路覆盖25篇GAN论文,第二个大部分会进一步 ...

  4. Generative Adversarial Networks overview(1)

    Libo1575899134@outlook.com Libo (原创文章,转发请注明作者) 本文章会先从Gan的简单应用示例讲起,从三个方面问题以及解决思路覆盖25篇GAN论文,第二个大部分会进一步 ...

  5. GD-GAN: Generative Adversarial Networks for Trajectory Prediction and Group Detection in Crowds

    GD-GAN: Generative Adversarial Networks for Trajectory Prediction and Group Detection in Crowds 2019 ...

  6. StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks 论文笔记

    StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks  本文将利 ...

  7. 论文笔记之:Semi-Supervised Learning with Generative Adversarial Networks

    Semi-Supervised Learning with Generative Adversarial Networks 引言:本文将产生式对抗网络(GAN)拓展到半监督学习,通过强制判别器来输出类 ...

  8. Paper Reading: Perceptual Generative Adversarial Networks for Small Object Detection

    Perceptual Generative Adversarial Networks for Small Object Detection 2017-07-11  19:47:46   CVPR 20 ...

  9. (转)Introductory guide to Generative Adversarial Networks (GANs) and their promise!

    Introductory guide to Generative Adversarial Networks (GANs) and their promise! Introduction Neural ...

随机推荐

  1. .NET MVC+angular导入导出

    cshtml: <form class="form-horizontal" id="form1" role="form" ng-sub ...

  2. EM算法(期望最大化算法)

    适用场景:存在为未测变量的情况下,对模型参数进行估计. EM算法: input:观测数据Y,为观测数据Z,联合分布P(Y,Z|θ),条件分布P(Z|Y,θ) output:模型参数θ 步骤: (1)选 ...

  3. SharePoint Framework 基于团队的开发(四)

    博客地址:http://blog.csdn.net/FoxDave 确保代码一致性和质量 软件开发团队常常同项目的一致性和高质量做斗争.不同的开发者有不同的编码风格和偏好.在每个团队都有技术优秀的独立 ...

  4. 自己练习的一个小的demo的时候a标签关于href链接的问题

    一.Js的几种调用方法(参考总结的) 1.a href="javascript:js_method();" 这是常用的方法,但是这种方法在传递this等参数的时候很容易出问题,而且 ...

  5. nmon的安装使用

    一.下载Nmon 根据CPU的类型选择下载相应的版本: http://nmon.sourceforge.net/pmwiki.php?n=Site.Download http://sourceforg ...

  6. Windows7上安装Ubuntu双系统

    零.前言 最近不小心把Ubuntu系统搞崩了打不开了,在网上找了找方法,从最初的步骤开始安装,本文是安装Ubuntu16.04,不过安装啥版本步骤都一样,下面逐一介绍. 一.如何卸载Ubuntu(第一 ...

  7. Java - Java入门(2-1am)

    第一讲.Java入门 1. 计算机语言是人和计算机进行交互的一种工具,人们通过使用计算机语言编写程序来向计算机施令,计算机则执行程序,并把结果输出给用户. 2. 机器语言:由0.1序列构成的指令码组成 ...

  8. Problem: 棋盘小游戏(一道有意思的acm入门题

    Problem Description 现有一个2行13列的棋盘,棋盘上的任意一个位置可以向他临近的8个位置移动.棋盘上的每一个位置的标号由一个大写的英文字母表示.现在给你一个移动的顺序,问你如何设置 ...

  9. 剑指Offer 63. 数据流中的中位数(其他)

    题目描述 如何得到一个数据流中的中位数?如果从数据流中读出奇数个数值,那么中位数就是所有数值排序之后位于中间的数值.如果从数据流中读出偶数个数值,那么中位数就是所有数值排序之后中间两个数的平均值.我们 ...

  10. JAVA 集合 按照某个字段(依据一定条件)进行分组

    由于数据不能够在本地化实现, 无法通过sql语句得到对应的结果,小编只好在业务层处理.通过调用接口得到集合,拿到集合后,通过年来分组,以此来达到对应的Map集合... 在这里小编给大家提供一个封装了一 ...