前天看了 criss-cross 里的注意力模型  仔细理解了  在: https://www.cnblogs.com/yjphhw/p/10750797.html

今天又看了一个注意力模型 《Self-Attention Generative Adversarial Networks》   https://arxiv.org/pdf/1805.08318v1.pdf

里边关键的还是注意力机制,又花了一个小时理解了下,感觉这种方式能够带来另一种视野的扩大,其中cnn是通过不断卷积扩大视野。

而这种注意力模型直接通过内积(矩阵的乘法)和 线性组合来直接获取全局信息,作者们都认为是注意力! 是否有其他含义还需要进一步理解。

这篇文章里关键就是注意力的产生:

这里边的操作 圆圈里的差  就是值得矩阵乘法。 整个这种注意力机制的论文多起来, 经典的style tranfer的论文也是用类似的方法计算风格损失的 格莱姆矩阵

下面就从输入x开始, x是个 c*w*h的 特征图  论文里写 c*n 是因为把w*h 展开了 。

然后三路 1*1卷积,没问题,这个操作可以先不展开。

这里我们用不展开的方式 先描述  f(x)和g(x)做 c`*1*1的卷积, h(x)是 做 c*1*1的卷积

做完后 对f(x),g(x) 在空间维度上拉开 w*h 拉开为 n=w*h

黄色的就是  c`*n    绿色也是  c`*n      大小的矩阵

对黄色的转置 就是 n*c`    然后 和绿色的就能做矩阵乘法

得到一个 n*n的矩阵。下边为了归一化参数,在列的方向上做softmax。得到了一个n*n的注意力矩阵,为什么在列方向上归一化,这是因为为了下一步和h(x)的特征图相乘

h(x)是经过 c*1*1的卷积操作,对输入x进行了一次变换的来的,同样对其拉开就成了一个 c*n的矩阵

刚才得到的注意力矩阵式n*n的,并且在列上归一化了,  所以 h(x)* attention  得到一个  (c*n) *(n*n)= c*n 大小的矩阵。

然后恢复 c*n 到 c*w*h就可以。

这样就可以看到这完全就是对每个位置和所有位置进行加权,一下子具有全局感受视野,而且每个位置的权值不同。

这可以细细体会下,这样的操作到底代表了什么。

卷积是扩大视野的方法,这种操作直接一步到位获取了全局视野。

和criss-cross的方法是在通道上,这个直接是在通道内。不太确定。

之前还有squeeze 和 excitation的注意力方法

如何结合起来,是否可以用在分类上,提升分类精度? 值得思考。

《Self-Attention Generative Adversarial Networks》里的注意力计算的更多相关文章

  1. AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks 笔记

    AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks 笔记 这 ...

  2. SAGAN:Self-Attention Generative Adversarial Networks - 1 - 论文学习

    Abstract 在这篇论文中,我们提出了自注意生成对抗网络(SAGAN),它是用于图像生成任务的允许注意力驱动的.长距离依赖的建模.传统的卷积GANs只根据低分辨率图上的空间局部点生成高分辨率细节. ...

  3. Generative Adversarial Networks overview(2)

    Libo1575899134@outlook.com Libo (原创文章,转发请注明作者) 本文章会先从Gan的简单应用示例讲起,从三个方面问题以及解决思路覆盖25篇GAN论文,第二个大部分会进一步 ...

  4. Generative Adversarial Networks overview(1)

    Libo1575899134@outlook.com Libo (原创文章,转发请注明作者) 本文章会先从Gan的简单应用示例讲起,从三个方面问题以及解决思路覆盖25篇GAN论文,第二个大部分会进一步 ...

  5. GD-GAN: Generative Adversarial Networks for Trajectory Prediction and Group Detection in Crowds

    GD-GAN: Generative Adversarial Networks for Trajectory Prediction and Group Detection in Crowds 2019 ...

  6. StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks 论文笔记

    StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks  本文将利 ...

  7. 论文笔记之:Semi-Supervised Learning with Generative Adversarial Networks

    Semi-Supervised Learning with Generative Adversarial Networks 引言:本文将产生式对抗网络(GAN)拓展到半监督学习,通过强制判别器来输出类 ...

  8. Paper Reading: Perceptual Generative Adversarial Networks for Small Object Detection

    Perceptual Generative Adversarial Networks for Small Object Detection 2017-07-11  19:47:46   CVPR 20 ...

  9. (转)Introductory guide to Generative Adversarial Networks (GANs) and their promise!

    Introductory guide to Generative Adversarial Networks (GANs) and their promise! Introduction Neural ...

随机推荐

  1. CrashHandler

    CrashHandler 全局Crash捕获处理

  2. 本地存储localStorage sessionStorage 以及 session 和cookie的对比和使用

    cookie和session都是用来跟踪浏览器用户身份的会话方式. 1.验证当前服务中继续请求数据时,哪些缓存数据会随着发往服务器? 只有cookie中设置的缓存数据会发送到服务器端 2. 强调几点: ...

  3. Java——继承的运行顺序

    首先看一个代码 父类代码: public class Parent { { System.out.println("Parent非静态代码块"); } static { Syste ...

  4. 待实验的socketserver

    # -*- coding:utf-8 -*-# Author: Dennis Huang__Author__ = "Dennis" import socketserver clas ...

  5. shell练习题7

    需求如下: 输入一串随机数字,然后按千分位输出. 例如:输入随机数字为"123456789",输出为123,456,789 参考解答如下 -方法1 [root@lanquark s ...

  6. python命令随记

    1. pip版本需要升级命令: python -m pip install --upgrade pip 2.查找Django命令 pip show django 3.查看python安装目录 进入Py ...

  7. jdbc工具类的封装,以及表单验证数据提交后台

    在之前已经写过了jdbc的工具类,不过最近学习了新的方法,所以在这里重新写一遍,为后面的javaEE做铺垫: 首先我们要了解javaEE项目中,文件构成,新建一个javaEE项目,在项目中,有一个we ...

  8. 3--Postman--变量(environment&global)

    (1) Environment clear an environment variable: pm.environment.unset("variable_key")--recom ...

  9. 3.7 unittest之断言

    3.7 unittest之断言 前言在测试用例中,执行完测试用例后,最后一步是判断测试结果是pass还是fail,自动化测试脚本里面一般把这种生成测试结果的方法称为断言(assert).用unitte ...

  10. jQuery-3.事件篇---键盘事件

    jQuery键盘事件之keydown()与keyup()事件 鼠标有mousedown,mouseup之类的事件,这是根据人的手势动作分解的2个触发行为.相对应的键盘也有这类事件,将用户行为分解成2个 ...