luogu 4345 Lucas的变形应用
求 sigma i由0-k C(n,i)
利用Lucas定理+整除分块将C(n/p,i/p)利用i/p分块,得到k/p-1个整块(p-1)和一个小块(k%p)
最后得到式子 F(n,k)=F(n/p,k/p-1)*F(n%p,p-1)+C(n/p,k/p)*F(n%p,k%p);
写代码时将F编写成类似与Lucas的递归程序
F(int n,int m) if(k<0) return 0; if(n==0&&k==0) return 1;
Lucas if(m==0) return 1; if(n==m) return 1;if(n<m) return 0;
#include<bits/stdc++.h>
#define int long long
#define rep(i,x,y) for(register int i=x;i<=y;i++)
using namespace std;
const int N=;
const int p=;
inline int read(){
int x=,f=;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-;ch=getchar();}
while(isdigit(ch)){x=(x<<)+(x<<)+(ch^);ch=getchar();}
return x*f;}int c[N][N],f[N][N];
inline void init(){
rep(i,,) c[i][]=;
rep(i,,)rep(j,,i) c[i][j]=(c[i-][j]+c[i-][j-])%p;
rep(i,,) f[i][]=;
rep(i,,)rep(j,,) f[i][j]=(f[i][j-]+c[i][j])%;}
inline int Lucas(int n,int m){
if(!m) return ;
if(n==m) return ;
if(n<m) return ;
return c[n%p][m%p]*Lucas(n/p,m/p)%p;}
inline int F(int n,int k){
if(k<) return ;
if(n==||k==) return ;
if(n<p&&k<p) return f[n][k];
return (F(n/p,k/p-)*f[n%p][p-]%p+Lucas(n/p,k/p)*f[n%p][k%p]%p)%p;}
signed main(){init();
int T=read();while(T--){
int n=read(),k=read();
printf("%lld\n",F(n,k));}
return ;}
完结撒花
luogu 4345 Lucas的变形应用的更多相关文章
- Luogu 4345 [SHOI2015]超能粒子炮·改
BZOJ4591 并不会写的组合数学. 我们设$f(n, k) = \sum_{i= 0}^{k}\binom{n}{i}$,那么每一个询问要求的就是$f(n, k)$. 发现$f(i, j)$其实可 ...
- 【luogu P3807】【模板】卢卡斯定理/Lucas 定理(含 Lucas 定理证明)
[模板]卢卡斯定理/Lucas 定理 题目链接:luogu P3807 题目大意 求 C(n,n+m)%p 的值. p 保证是质数. 思路 Lucas 定理内容 对于非负整数 \(n\),\(m\), ...
- luogu 2480 古代猪文 数论合集(CRT+Lucas+qpow+逆元)
一句话题意:G 的 sigma d|n C(n d) 次幂 mod 999911659 (我好辣鸡呀还是不会mathjax) 分析: 1.利用欧拉定理简化模运算 ,将上方幂设为x,则x=原式mod ...
- [luogu P2633] Count on a tree
[luogu P2633] Count on a tree 题目描述 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第K小的点 ...
- luogu P2480 [SDOI2010]古代猪文
M_sea:这道题你分析完后就是一堆板子 废话 理解完题意后,我们要求的东西是\(G^s(s=\sum_{d|n} \binom{n}{d})\) 但是这个指数\(s\)算出来非常大,,, 我们可以利 ...
- [luogu P2294] [HNOI2005]狡猾的商人
[luogu P2294] [HNOI2005]狡猾的商人 题目描述 输入输出格式 输入格式: 从文件input.txt中读入数据,文件第一行为一个正整数w,其中w < 100,表示有w组数据, ...
- 数论入门2——gcd,lcm,exGCD,欧拉定理,乘法逆元,(ex)CRT,(ex)BSGS,(ex)Lucas,原根,Miller-Rabin,Pollard-Rho
数论入门2 另一种类型的数论... GCD,LCM 定义\(gcd(a,b)\)为a和b的最大公约数,\(lcm(a,b)\)为a和b的最小公倍数,则有: 将a和b分解质因数为\(a=p1^{a1}p ...
- Lucas–Kanade光流算法学习
Lucas–Kanade光流算法是一种两帧差分的光流估计算法.它由Bruce D. Lucas 和 Takeo Kanade提出. 光流(Optical flow or optic f ...
- 【bzoj4176】Lucas的数论 莫比乌斯反演+杜教筛
Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目"求Sigma(f(i)),其中1<=i< ...
随机推荐
- 浏览器和服务器实现跨域(CORS)判定的原理
前端对Cross-Origin Resource Sharing 问题(CORS,中文又称'跨域')应该很熟悉了.众所周知出于安全的考虑,浏览器有个同源策略,对于不同源的站点之间的相互请求会做限制(跨 ...
- pdf 下载demo
最近写了个pdf下载的demo,在这里记录一下.. 1 要下载pdf首先要有pdf 模板 ,制作pdf 模板就是 word 另存为 pdf . 2 用 Adobe Acrobat X Pro 这个软 ...
- 【转】Android OkHttp3简介和使用详解
一 OKHttp简介 OKHttp是一个处理网络请求的开源项目,Android 当前最火热网络框架,由移动支付Square公司贡献,用于替代HttpUrlConnection和Apache HttpC ...
- linux文件系統详解
什么是文件系统 文件系统是操作系统用于明确磁盘或分区上的文件的方法和数据结构,即在存储设备(磁盘)上组织文件的方法.操作系统中负责管理和存储文件信息的软件结构称为文件管理系统,简称文件系统. 从系统角 ...
- yidiandian
hzwer libreoj (需要拿新版的打开)
- Python排序算法——冒泡排序
有趣的事,Python永远不会缺席! 如需转发,请注明出处:小婷儿的python https://www.cnblogs.com/xxtalhr/p/10786904.html 一.冒泡排序(Bubb ...
- Facebook第三方网页登录(JavaScript SDK)
文档网址:https://developers.facebook.com/docs/facebook-login/web#logindialog 一.应用配置 https://www.faceboo ...
- sql sever基本命令
创建表: create table stu_info( id ,) not null primary key clustered, name ) not null, score numeric not ...
- 动态生成table 列
table.render({ elem: '#test-table-comelist' ,url: layui.setter.base + 'list/comelist' ,cols: [[]] ,d ...
- python之面向对象初识
一.面向对象初识 1.结构上 面向对象分成两部分:属性.方法 class A: name = 'xiaoming' # 静态属性.静态变量.静态字段. def func1(self): # 函数.动态 ...