文章引起我关注的主要原因是在CoNLL03 NER的F1值超过BERT达到了93.09左右,名副其实的state-of-art。考虑到BERT训练的数据量和参数量都极大,而该文方法只用一个GPU训了一周,就达到了state-of-art效果,值得花时间看看。

一句话总结:使用BiLSTM模型,用动态embedding取代静态embedding,character-level的模型输出word-level的embedding. 每个词的embedding和具体任务中词所在的整句sequence都有关,算是解决了静态embedding在一词多义方面的短板,综合了上下文信息。

文章重点内容记录:

目前三种主流embedding:

A. 经典embedding

B. character-level 基于特定任务的embedding,不需要预训练,与任务的训练过程同步完成

C. 基于上下文的,由深度LSTM各层hidden state的线性组合而成的embedding

本文模型特点:

A. 模型以character为原子单位,在网络中,每个character都有一个对应的hidden state. -- 这个特点对需要多一步分词的中文来说可能有避免分词错误导致下游function继续错误的弊端。

B. 输出以word为单位的embedding, 这个embbeding由前向LSTM中,该词最后一个字母的hidden state 和反向LSTM中该词第一个字母的hidden state拼接组成,这样就能够兼顾上下文信息。具体说明见下图:

实验结果:

表格中PROPOSED表示文中提出的embedding, word代表经典预训练embedding, char表示任务相关的embedding,可以看出本文的动态embedding + 经典预训练embedding的组合最有效,char-embedding加不加基本没有影响。

模型训练相关参数:

语料库:英文 - 10亿词语料库  德文-5亿词语料库

训练过程: 1个GPU跑了一周

时间性能:

10个单词左右句子产生embedding需要10ms左右,20个单词句子基本就涨到20ms,对生产环境来说勉强可以接受。

正在尝试训一版中文动态embedding, 稍晚会补充结果。

如果有理解不到位的地方,欢迎指正。

原创文章,转载请注明出处。

论文阅读笔记:《Contextual String Embeddings for Sequence Labeling》的更多相关文章

  1. 《MuseGAN: Multi-track Sequential Generative Adversarial Networks for Symbolic Music Generation and Accompaniment》论文阅读笔记

    出处:2018 AAAI SourceCode:https://github.com/salu133445/musegan abstract: (写得不错 值得借鉴)重点阐述了生成音乐和生成图片,视频 ...

  2. (转)Introductory guide to Generative Adversarial Networks (GANs) and their promise!

    Introductory guide to Generative Adversarial Networks (GANs) and their promise! Introduction Neural ...

  3. 生成对抗网络(Generative Adversarial Networks,GAN)初探

    1. 从纳什均衡(Nash equilibrium)说起 我们先来看看纳什均衡的经济学定义: 所谓纳什均衡,指的是参与人的这样一种策略组合,在该策略组合上,任何参与人单独改变策略都不会得到好处.换句话 ...

  4. 生成对抗网络(Generative Adversarial Networks, GAN)

      生成对抗网络(Generative Adversarial Networks, GAN)是一种深度学习模型,是近年来复杂分布上无监督学习最具前景的学习方法之一.   GAN 主要包括了两个部分,即 ...

  5. StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks 论文笔记

    StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks  本文将利 ...

  6. 论文笔记之:Semi-Supervised Learning with Generative Adversarial Networks

    Semi-Supervised Learning with Generative Adversarial Networks 引言:本文将产生式对抗网络(GAN)拓展到半监督学习,通过强制判别器来输出类 ...

  7. 《Self-Attention Generative Adversarial Networks》里的注意力计算

    前天看了 criss-cross 里的注意力模型  仔细理解了  在: https://www.cnblogs.com/yjphhw/p/10750797.html 今天又看了一个注意力模型 < ...

  8. Paper Reading: Perceptual Generative Adversarial Networks for Small Object Detection

    Perceptual Generative Adversarial Networks for Small Object Detection 2017-07-11  19:47:46   CVPR 20 ...

  9. SalGAN: Visual saliency prediction with generative adversarial networks

    SalGAN: Visual saliency prediction with generative adversarial networks 2017-03-17 摘要:本文引入了对抗网络的对抗训练 ...

  10. Generative Adversarial Networks,gan论文的畅想

    前天看完Generative Adversarial Networks的论文,不知道有什么用处,总想着机器生成的数据会有机器的局限性,所以百度看了一些别人 的看法和观点,可能我是机器学习小白吧,看完之 ...

随机推荐

  1. Oracle优化器

    本文参照:https://www.cnblogs.com/Dreamer-1/p/6076440.html 读优化器之前建议先读: https://www.cnblogs.com/zhougongji ...

  2. 前端——JavaScript

    何谓JavaScript?它与Java有什么关系? JavaScript与HTML.CSS组合使用应用于前端开发,JavaScript是一门独立的语言,浏览器内置了JS的解释器.它除了和Java名字长 ...

  3. android H5支付 网络环境未能通过安全验证,请稍后再试

    android做混合开发微信H5支付时碰到的一个问题. 解决办法:把所使用的WebView中重新如下方法即可 webView.setWebViewClient(new WebViewClient() ...

  4. devmem读写物理内存和devkmem读取内核虚拟内存

    关键词:/dev/mem./dev/kmem.mmap.__va.__pa.remap_pfn_range等等. 在日常工作中常有直接操作寄存器或者某一物理地址的需求,busybox中提供了devme ...

  5. LOJ3053 十二省联考2019 希望 容斥、树形DP、长链剖分

    传送门 官方题解其实讲的挺清楚了,就是锅有点多-- 一些有启发性的部分分 L=N 一个经典(反正我是不会)的容斥:最后的答案=对于每个点能够以它作为集合点的方案数-对于每条边能够以其两个端点作为集合点 ...

  6. 在 CentOS 7 中安装 MySQL 8

    准备 本文环境信息: 软件 版本 CentOS CentOS 7.4 MySQL 8.0.x 安装前先更新系统所有包 sudo yum update 安装 1. 添加 Yum 包 wget https ...

  7. Entity Framework Core系列之DbContext

    前言: EF Core DbContext表示与数据库的会话,并提供与数据库通信的API,具有以下功能: 数据库连接 数据操作,如查询和持久化 更改追踪 模型构建 数据映射 对象缓存 事务管理 数据库 ...

  8. Django rest framework 使用haystack对接Elasticsearch

    Elasticsearch 介绍 ElasticSearch是一个基于Lucene的搜索服务器.它提供了一个分布式多用户能力的全文搜索引擎,基于RESTful web接口.Elasticsearch是 ...

  9. 企业nginx应用实例(功能拆分记录)

    一.默认访问协议强制跳转(http--->https) server { listen ; server_name dannylinux.top www.dannylinux.top; # re ...

  10. java 的数据类型及其所占的字节数

    1.char java中的一个char是2个字节.java采用unicode,2个字节来表示一个字符. 一个数字或英文或汉字都是一个字符,只不过数字和英文时,存储的2个字 节的第一个字节都为0,就是浪 ...